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Preface 

Cette thèse a été réalisée dans le cadre d’une convention CIFRE (2017/0165) entre la 

société de construction et de génie civil NGE-GUINTOLI (Saint-Etienne-du-Grès, 

France), l’Institut de Recheche pour la conservation des zones humides 

Méditerranéennes Tour du Valat (Arles, France), et l’Institut Méditerranéen de 

Biodiversité et d’Ecologie marine et continentale (IMBE, Avignon, France) au sein 

d’Avignon Université (Avignon, France). 

● 

This thesis was carried out under a French CIFRE convention (2017/0165) between the 

construction and civil engineering company NGE-GUINTOLI (Saint-Etienne-du-Grès, 

France), the Research Institute for the conservation of Mediterranean wetlands Tour 

du Valat (Arles, France), and the Mediterranean Institute of marine and terrestrial 

Biodiversity and Ecology (IMBE; Avignon, France) in Avignon University (Avignon, 

France).  

NGE (www.nge.fr) is a French group of construction and civil engineering founded in 

2006, realizing thousands of civil works every year mainly in France and in other 

countries. Activities include land management (soil treatment, mining, urban 

planning), constructions, riverbank management, and development of underground 

or surface pipelines and wired networks. The teams are committed to working 

alongside regional and local authorities to create bridges, roads, railways, optic fiber 

networks and leisure, and social and educational life spaces. Such actions, especially 

earthworks, cause deep ecosystem disturbances favoring invasive species 

establishment. NGE, concerned by environmental protection, fully initiated and 

funded this thesis project in order to develop revegetation strategies to reduce 

invasive plant establishment and spread after disturbances. This thesis work therefore 

aims at better understanding the determinants of early invasion resistance of newly 

established herbaceous plant communities. Results of this thesis were used to 

produce a practical guide, property of NGE, which provides revegetation principles to 

complement the currently known techniques and to improve the control of invasive 

plants in grassy environments. 

 

http://www.nge.fr/
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Résumé 

 

Les plantes invasives posent d’importants problèmes environnementaux et de santé publique, et leur 
contrôle est aujourd’hui un défi majeur. Elles rencontrent des conditions particulièrement favorables 
après des perturbations conduisant à une suppression du couvert végétal et une remobilisation des 
ressources disponibles. La mise en place d’un couvert végétal séquestrant rapidement ces ressources 
parait alors une réponse probante pour réduire l’invasion. Néanmoins, les caractéristiques des 
communautés nécessaires pour exercer une résistance efficace, notamment dans les premières phases 
d’installation, sont encore peu connues.  

Dans cette thèse, je me suis intéressée à deux mécanismes qui pourraient influencer la résistance à 
l’invasion des communautés végétales herbacées lors des premiers stades d’installation après une 
perturbation majeure, que sont (1) la ‘limiting similarity’, impliquant que la coexistence d’espèces 
partageant la même niche écologique est limitée par l’exclusion compétitive, et (2) les effets de priorité, 
qui surviennent lorsque l’installation d’une espèce affecte la performance ou la survie d’une espèce 
arrivant par la suite. L’examen de la littérature confirme que l’application de la ‘limiting similarity’ pour 
lutter contre les plantes invasives est complexe et n’a, jusqu’à aujourd’hui, fait preuve d’efficacité. Elle 
apparait inadaptée aux situations les plus communes. Intégrer les effets de priorité aux méthodes de 
contrôle des plantes invasives après une perturbation semble d’avantage prometteur. Une des 
stratégies consiste en la mise en place d’un couvert végétal exerçant de forts effets de priorité négatifs, 
diminuant le succès d’installation des plantes invasives. Deux expérimentations en serre ont été 
réalisées à cet effet. Elles visent à jouer sur les effets de priorité de la communauté native receveuse 
composée d’espèces classiquement utilisées en revégétalisation, afin d’en comprendre l’implication 
dans la résistance à l’invasion. Dans une première expérimentation, le temps d’avance de la 
communauté receveuse sur l’arrivée de trois espèces invasives (i.e. Ambrosia artemisiifolia, 
Bothriochloa barbinodis et Cortaderia selloana), la composition en espèces et la densité des semis ont 
été manipulés. Une meilleure résistance à l’invasion a été observée lorsque les communautés 
produisent une forte biomasse aérienne, cette dernière étant associée à la présence d’espèces 
productives. Retarder l’arrivée des espèces invasives a également réduit le succès d’invasion, mais ceci 
uniquement lorsque la production de biomasse était suffisamment importante. Une seconde 
expérimentation a porté sur l’influence de l’identité de la première espèce installée (deux poacées : 
Dactylis glomerata ou Lolium perenne et deux fabacées : Onobrychis viciifolia ou Trifolium repens) dans 
la communauté receveuse ainsi que l’ordre de semis des espèces (semis simultané de la communauté 
ou séquentiel) sur la structuration de la communauté et les conséquences sur sa résistance à l’invasion 
par A. artemisiifolia. Des différences minimes dans la dynamique de colonisation de la communauté 
receveuse a substantiellement affecté sa structure, sa production de biomasse, la concentration du sol 
en nutriments, ainsi que sa résistance précoce à l’invasion. Le semis séquentiel a généralement diminué 
la résistance à l’invasion par rapport au semis simultané de l’ensemble de la communauté. Les espèces 
installées en premier ont généré des effets de priorité d’intensité variable, vraisemblablement par le 
biais de la compétition racinaire, impactant le succès d’invasion par A. artemisiifolia. L’introduction 
précoce de la fabacée fixatrice d’azote T. repens a particulièrement stimulé la performance de A. 
artemisiifolia. 

En conclusion, tandis que l’application de la ‘limiting similarity’ se révèle être incompatible avec la 
conception de communautés résistantes à l’invasion précoce, manipuler la dynamique de colonisation 
et les effets de priorité semble d’avantage prometteur. La dynamique de colonisation a 
considérablement influencé le succès d'invasion en induisant, chez la communauté receveuse, des 
différences de production de biomasse et de préemption des ressources. Les effets de priorité des 
communautés récemment établies et la résistance à l'invasion associée pourraient être améliorés en 
(1) maximisant le temps d’avance à la communauté receveuse par rapport aux espèces invasives, (2) 
introduisant des espèces capables de produire rapidement de la biomasse et de préempter les 
ressources du sol, et (3) évitant le semis séquentiel, en particulier lorsque les premières espèces 
installées sont des espèces productives fixatrices d'azote. 

Mots clés : invasions biologiques ; contingences historiques ; dynamique temporelle ; ordre 
d’arrivée ; limiting similarity ; revégétalisation ; compétition ; composition ; densité ; biomasse ; 
communauté herbacée 
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Abstract 

 

Invasive plant species cause serious environmental and sanitary issues and their control is today a 
major challenge. Disturbances involving vegetation removal and an increase in resource availability 
offer particularly favorable conditions for invasive plant colonization. Establishing a plant cover rapidly 
sequestering resources could be a relevant strategy to limit invasion. However, little is known about 
the characteristics enabling newly established communities to exert strong invasion resistance, 
especially in the early growth stages. 

In this thesis, I focused on two potential determinants of invasion resistance of herbaceous plant 
communities in the early growth stages after a major disturbance, which are (1) the concept of limiting 
similarity, stating that the coexistence of species sharing the same ecological niche is limited by 
competitive exclusion, and (2) priority effects, which occur when the establishment of a species affects 
the performance or survival of later arriving species. The application of limiting similarity to control 
invasive plants appears complex, ineffective and unsuitable for the most common situations. In 
contrast, integrating priority effects into invasive plant management strategies seems more promising. 
One strategy consists in restoring a plant cover exerting strong negative priority effects, decreasing 
the success of subsequent invasive plant establishment. In two greenhouse experiments, I explored 
the role of priority effects in early invasion resistance. In a first experiment, I manipulated species 
composition, sowing density and the elapsed time between community sowing and invasion by 
Ambrosia artemisiifolia, Bothriochloa barbinodis and Cortaderia selloana. A higher invasion resistance 
was observed when communities produced a high aboveground biomass, which was associated with 
the presence of productive species. Delaying invasive species arrival also decreased invasion success, 
but only if it allowed a sufficient increase in biomass production. A second experiment investigated 
how the identity of the first native colonizer (one of two grasses: Dactylis glomerata and Lolium 
perenne, or one of two legumes: Onobrychis viciifolia and Trifolium repens) and the timing of species 
establishment (synchronous vs. sequential sowing) influenced the structuration of the recipient 
community and its resistance to invasion by A. artemisiifolia. Small differences in assembly history of 
the recipient community substantially affected community structure, biomass production, soil 
nutrient content, as well as early invasion resistance. Sequential sowing generally decreased invasion 
resistance compared with a synchronous sowing. Early colonizers generated priority effects of variable 
strength most likely via belowground competition, which affected A. artemisiifolia’s invasion success. 
A prior establishment of the N-fixing legume T. repens particularly boosted A. artemisiifolia’s 
performance.  

In conclusions, this thesis work highlights the inadequacy of revegetation strategies based on limiting 
similarity and reveals promising perspectives of manipulating assembly history and priority effects for 
designing invasion resistant communities. Assembly history significantly influenced early invasion 
success by inducing differences in biomass production and resource preemption by the recipient 
community. Priority effects of newly established communities and associated invasion resistance could 
be enhanced by (1) giving as much time advance as possible to the recipient community over invasives, 
(2) introducing species displaying an ability to rapidly produce biomass and preempt soil resources, or 
(3) avoiding sequential sowing especially when early colonizers are nitrogen-fixing, productive species.  

Key Words : biological invasions ; historical contingencies ; timing ; order of arrival ; limiting similarity ; 
revegetation ; competition ; composition ; density ; biomass ; herbaceous community 
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  Nature is not more complicated than you think, 

 it is more complicated than you CAN think. 

 

Frank Edwin Egler 
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I.1 | Biological invasions 

I.1.1 | Definition 

Invasive alien species (hereafter ‘invasive species’) can be defined as species introduced 

outside their normal distribution through human activity, that become established in natural 

or semi-natural ecosystems or habitat where they cause environmental damage, especially 

on resident species (Alpert et al. 2000; Shine & Williams 2000). Invasion ecology, the 

discipline studying the causes and the consequences of biological invasions (Richardson et 

al. 2011) emerged half a century ago in Charles’ Elton seminal book: The Ecology of Invasions 

by Animals and Plants (1958). After rather hesitant beginnings, research on invasion ecology 

generated an extended body of literature (Davis 2006; Ricciardi & MacIsaac 2008; 

Richardson & Pyšek 2008). The field addresses aspects relating the introduction of 

organisms, their ability to establish, naturalize and invade the target region, their 

interactions with resident organisms in their new habitat, and the positive or negative 

impacts of their presence and abundance with reference to human value systems 

(Richardson & Van Wilgen 2004). 

I.1.2 | Impacts of biological invasions  

The number of species introduced intentionally or accidentally across their natural dispersal 

barriers started to increase dramatically 200 years ago with trade globalization (Hulme 2007; 

Seebens et al. 2017; Simberloff et al. 2013), and this increase is expected to intensify (Sala et 

al. 2000; Seebens et al. 2015). Organisms surviving to transit and successfully invading new 

habitats can threaten native biodiversity and ecosystem functions, human well-being, and 

generate devastating economic costs.  

Biodiversity and ecosystem functioning 

Invasive species are recognized as one of the leading global threats to biodiversity (Brondizio 

et al. 2019; Mollot et al. 2017; Sala et al. 2000; Vilà et al. 2011; Wilcove et al. 1998). Invasive 

species can impair native species distribution and abundance directly through direct 

consumption (Simberloff et al. 2013), or competitive displacement associated with habitat 

alterations (e.g. altered disturbance regimes; Gurevitch & Padilla 2004; Hejda et al. 2009), or 

indirectly by significantly altering disturbance regimes, and/or biogeochemical, 

hydrological and/or geomorphological ecosystem processes (Levine et al. 2003; Liao et al. 

2008). Disruptions to mutualistic plant-animal (i.e. pollination and animal-assisted seed 

dispersal; Traveset & Richardson 2006) or plant-fungus (i.e. mycorrhizal associations; 

Roberts & Anderson 2001) interactions caused by invasions also contribute to the alteration 

of ecosystem functioning and stability.  
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Invasive species can also threat native species genetic integrity and existence through 

hybridization (Allendorf et al. 2001; Bleeker et al. 2007; Ellstrand & Schierenbeck 2000; Vilà 

et al. 2000). Hybrids can either be (1) less performant than native species, which can cause 

from progressive native population declines (Muhlfeld et al. 2009) to species extinction 

(Rhymer & Simberloff 1996), or (2) more vigorous than native species, which can lead to 

extended spread in new habitats and native species replacement (Majumder et al. 1997).  

Human well-being and economy 

While some introduced species clearly benefit to humanity (e.g. food crops, species used for 

biological pest control), others degrade human well-being directly. Invasions can affect 

constituents of well-being such as human health and quality of life, and also recreational 

activities and cultural heritage (Charles & Dukes 2008). Invasive species can act as vectors 

of disease (e.g. the Asian tiger mosquito imported in the U.S. transmit dengue fever and other 

human viruses; Craven et al. 1988), or provoke themselves health issues (e.g. the common 

ragweed pollen causing severe allergies; Smith et al. 2013). Invasive species affect 

nonetheless natural habitats, but also anthropogenic environments such as crops, 

rangelands and commercial forests, generating major economic losses in lost yields and 

control efforts (Pimentel et al. 2005; Scalera 2010). 

Invasive species management global strategy

The disastrous impacts of invasions make efficient invasive species management a major 

ecological and conservation challenge worldwide. The emergency to regulate invasive 

species spread has been internationally acknowledged by the Convention on Biological 

Diversity international agreement, Article 8(h): ‘Each contracting Party shall, as far as 

possible and as appropriate, prevent the introduction of, control or eradicate those alien 

species which threaten ecosystems, habitats or species’. The European Union Regulation 

1143/2014 on Invasive Alien Species provides a list of species of concern for Europe and a set 

of management measures to be taken for combatting these species. In France, a national 

strategy on Invasive Alien Species responding to the EU Regulation has been published in 

2017 (Stratégie Nationale Relative aux Espèces Exotiques Envahissantes, 2017). 

The optimal management strategy changes depending on invasion stage (Figure I.1; 

Simberloff et al. 2013), leading to a hierarchical approach that has been internationally 

adopted. This approach involves three types of measures: prevention, early detection and 

eradication, and long-term management. A proactive approach, focused on prevention and 

early intervention is often the most cost-effective management option (DiTomaso 2000; 

Sheley et al. 1996). The complete removal of an invasive species would be achievable if 

detected soon after its introduction and immediately removed (Rejmánek & Pitcairn 2002). 

When prevention and early eradication fail, management efforts focus on containing the 

core population to prevent the spread in new areas. Finally, when an invader is widespread 

and too abundant to contain, eradication becomes unlikely and long-term management is 
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the last option. Long-term management aim at reducing populations to the lowest possible 

levels and protect specific resources. 

 

Figure I.1 Hierarchical management strategy against invasive species, modified from Simberloff et al. 

(2013) and Harvey and Mazzotti (2014). The optimal strategy changes with time since invasive species 

introduction. Management efficiency decreases over time, while invasive species impact and 

detectability, as well as management cost increases. 

I.2 | Plant invasions  

I.2.1 | Distribution 

Introductions of alien plants have multiplied through the intensification of global trade 

(Seebens et al. 2015), agricultural activities, or for cultivation in botanic and private gardens 

(Hulme 2015). Consequently, 13,000 plant species (corresponding to almost 4% of the global 

vascular flora) have become naturalized in foreign regions, with the highest numbers 

recorded in Europe and North America (Van Kleunen et al. 2015). Tropical regions are poorer 

in naturalized alien plant species than temperate and Mediterranean regions (Van Kleunen 

et al. 2015), a phenomenon attributed to ecological (i.e. fewer available niches, faster 

vegetation resilience after disturbance in tropical areas) and historical differences (i.e. lower 

introduction rate; Van Kleunen et al. 2015). In addition, islands are more invaded than 

mainland regions (Pyšek et al. 2017; Van Kleunen et al. 2015), presumably because of the 

presence of unsaturated niches (Denslow 2003) or the higher number of introductions (Van 

Kleunen et al. 2015).  

I.2.2 | Characteristics of plant invaders 

There has been a longstanding effort to identify the characteristics enabling a species to 

invade a habitat, i.e. invasiveness (Figure I.2; Baker 1965; Gallagher et al. 2015; Pandit et al. 

2014; Pyšek & Richardson 2008; Razanajatovo et al. 2016; Van Kleunen et al. 2010; van Kleunen 

et al. 2015). Naturalized alien plant species appear non-randomly distributed over the 
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phylogeny (Pyšek et al. 2017). The Compositae family present the highest absolute number of 

naturalized alien species (1,343 species), followed by Poaceae (1,267) and Leguminosae (1,189). 

Some families and genera are over- or under-represented among naturalized alien species, 

with differences between islands and mainland regions (Pyšek et al. 2017). A markedly high 

proportion of naturalized plant species are annuals, most likely because of a greater dispersal 

ability and broader distribution, short generation time and ability to form seed bank, as well 

as their affinity to anthropogenic habitats (Pyšek et al. 2017). 

Whether particular traits are associated to invasiveness has been widely explored (Callaway 

& Ridenour 2004; Daehler 2003; Davidson et al. 2011; Gallagher et al. 2015; Leffler et al. 2014; 

Pyšek & Richardson 2008; Roy 1990; Van Kleunen et al. 2010). Invasion success has 

sometimes been related to higher competitive abilities of invasive species than natives 

(Golivets & Wallin 2018; Kuebbing & Nuñez 2016; but see Zhang & van Kleunen 2019) or higher 

phenotypic plasticity (i.e. greater ability to change in phenotypic expression in response to 

environmental factors; Schweitzer & Larson 1999; Williams et al. 1995; but see Davidson et 

al. 2011). The meta-analysis of Pyšek and Richardson (2008) provides support for height, 

vigorous vegetative growth, early and extended flowering, and attractiveness to humans as 

traits associated with invasiveness in vascular plants. Recent studies suggest that traits 

allowing non-native species to naturalize in a new environment (i.e. reproduce in the new 

environment) are dissimilar to those associated with successful invasion (i.e. naturalize and 

spread over long distances; Catford et al. 2019; Divíšek et al. 2018; Moravcová et al. 2015; 

Richardson & Pyšek 2012). The lack of constancy between studies, although partly due to 

methodological issues (e.g. comparator choice; Van Kleunen et al. 2010), as well as complex 

results including many exceptions, reveal that invasiveness does not drive invasion success 

by itself. 
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I.2.3 | The determinants of plant invasion success 

Successful invasion depends on multiple factors varying along the invasion course 

Invasion success results from interactions between the characteristics of the invader (i.e. 

invasiveness, see I.2.2) and the susceptibility of the invaded habitat to invasion (i.e. 

invasibility; Figure I.2). The importance of each of these factors varies during the invasion 

process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Invasibility encompasses characteristics of the abiotic environment as well as biotic 

components. Successful invasion results from multiple interacting processes, including 

invader characteristics enabling invasion (i.e. invasiveness, see I.2.2) and characteristics 

determining the susceptibility of the invaded habitat to invasion (i.e. invasibility or ecological 

resistance; Alpert et al. 2000; Byun et al. 2018). Evolutionary history may affect invasibility as 

(1) habitats in which intense competition occurred over evolutionary time scales may have 

selected highly competitive native species, which are more likely to outcompete potential 

invaders, and (2) in isolated habitats (islands), a lower selection for competitive abilities may 

have occurred, resulting in native communities more susceptible to invasion by competitive 

invaders, and (3) habitats with a long history of human disturbance may encounter more 

native species selected to perform well under disturbed conditions, resulting in a lower 

vulnerability to invasion (Alpert et al. 2000). Propagule pressure, which is partly determined 

by the ability of an invader to produce a large amount of propagules, also depends on habitat 

characteristics: (1) the presence of strong dispersal agents (e.g. streams) may increase the 

frequency of invasion events and the amount of introduced invader propagules (Alpert et al. 

2000), and (2) the degree of habitat fragmentation influence propagule dispersal (i.e. patchy 

habitats are more invaded; Harrison 1999). Abiotic conditions are strongly involved in 

Figure I.2 Main factors influencing plant invasion success. 
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invasibility. Notably, low resource availability (Davis et al. 2000), extreme conditions such as 

very high temperature and the presence of toxins are expected to lower invasibility (Alpert 

et al. 2000). Disturbances usually enhance invasibility by increasing resource availability 

(D’Antonio 2000; Davis et al. 2000; Hobbs & Huenneke 1992). Interactions with biotic 

components also affect invasion success (Levine et al. 2004). Biotic resistance, describing 

the ability of resident organisms in a community to resist or limit invasions (Levine et al. 

2004) encompasses competition from resident species plants (Levine 2000; Seabloom et al. 

2003), interactions with natural enemies (i.e. herbivores, parasites, and pathogens; Keane & 

Crawley 2002), and mutualists (i.e. soil fungi and bacteria, pollinators, and dispersal agents; 

Richardson, Allsopp et al. 2000; Traveset & Richardson 2014). 

Attempts to apprehend the invasion process have led to developing models that partition 

the invasion course in several phases (Richardson & Pyšek 2006; Theoharides & Dukes 2007). 

According to Theoharides and Dukes (2007), transition from ‘native’ in a given location to 

‘invasive’ in an unoccupied region involves four phases: long-distance transport, 

colonization, establishment, and landscape spread. Multiple factors determine successful 

transition from one to another phase. A species is more likely to be transported out of its 

natural repartition area when possessing a wide native range and horticultural or 

agricultural qualities, but accidental transportations also occur. Colonization success of an 

invasive species arriving in a new environment will particularly rely on its ability to cope with 

environmental conditions such as climate, soil type, pH, resource availability (Davis et al. 

2000) and disturbance regime (Lockwood et al. 2013). Moreover, propagule pressure (i.e. 

combining the number of introduced propagules and invasion events), increasing genetic 

diversity in the new area, is considered as major determinant of colonization success 

(Lockwood et al. 2005). Colonizing individuals must then be able to reproduce and form a 

self-sustaining population to establish. This step is especially constrained by interactions 

with resident organisms. 

Community assembly as a framework for invasion success at the community scale 

At the community scale, successful colonization and establishment of an invasive plant 

species can be considered as governed by similar rules as natives (Pearson et al. 2018). Hence, 

the establishment success of an invader in a resident community relies on processes driving 

species assembly and coexistence in an ecological community (i.e. a set of individuals 

belonging to numerous species that coexist and interact in an area or a habitat; Drake 1990), 

whatever their status. Community assembly theory focuses on identifying these processes 

(Weiher & Keddy 1999), and therefore offers a framework for understanding invasion success 

(Figure I.3; Pearson et al. 2018). Community assembly encompasses the driving forces in the 

development of ecological communities (Weiher & Keddy 1999) and the mechanisms 

underlying species coexistence (Mason & Wilson 2006). Community assembly can be 

represented by a dynamic filter model, which dissociates the different processes influencing 

the state of a community structure at a site (Temperton et al. 2004).  
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New species may invade a community from an external species pool, i.e. species in nearby 

habitat, or from an internal species pool, i.e. species present at the site. Species from the 

external species pool must be able to pass the dispersal filter, i.e. be transported to from the 

surroundings by drift, dispersal clonal growth or other mechanisms. Then new species must 

pass the abiotic filter, i.e. tolerate environmental conditions (chemical and physical 

characteristics) and endogenous disturbance regime. Finally, to become part of the 

community, new species must deal with biotic interactions of the environment, including 

competition with other plants but also interactions with consumers, mutualists and 

pathogens. Exogenous disturbance and environmental stress (e.g. pollutant release) can 

influence the filtering process by affecting environmental conditions and generating local 

species extinctions. Communities and ecosystems are open and dynamic entities (De Leo & 

Levin 1997; Parker & Pickett 1997; Rykiel 1985), so that filters and their effects change over 

time. Abiotic conditions and biotic interactions are interdependent and are constantly self-

adjusting to each other through feedback loops.   

Relationship between invasibility, resource availability and disturbance 

Following seed germination and the subsequent consumption of seed reserves, competition 

for limiting resources, such as space, light, water and nutrients is critical for seedling 

establishment success (Crawley 1987; Crawley et al. 1999; Davis et al. 2000; Johnstone 1986; 

Vitousek & Walker 1987). Resource availability naturally differs between ecosystems, and 

Figure I.3 Schematic representation of the dynamic filter model, modified from 

Temperton et al. (2004). 
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fluctuates with the seasons and at larger time scales. Fluctuation in resource availability is 

caused by variations in resource supply and uptake by the resident vegetation and other 

living organisms, themselves caused by meteorological fluctuations or site-specific events 

such as disturbances, changes in grazing pressure, or pest outbreaks (Davis et al. 2000). An 

increase in resource availability occurs when (1) the use of resources by the resident 

community declines, or (2) resource supply increases at a rate faster that the resident 

community can sequester it (Davis et al. 2000).  

Resource uptake may particularly decline after a disturbance (i.e. a discrete event in time 

that disrupts ecosystem, community, or population structure and changes resources, 

substrate availability or physical environment; Runkle et al. 1985) that destroyed some or all 

individuals in a community. The subsequent increase in space, light, water and nutrients 

availability is expected to provide opportunities for species recruitment – native and invasive 

ones - into the community (Brown & Peet 2003; Davis et al. 2000; Hobbs & Huenneke 1992; 

Shea & Chesson 2002). The fluctuation hypothesis theory developed by Davis et al. (2000) 

also implies that the likelihood of a species to establish successfully may decline as the 

community grows and efficiently sequester available resources. Inter- and intra-annual 

variations however occur depending on natural vegetation and ecosystem dynamics and 

associate resources uptake and supply.  

Non-native species benefit more of disturbances than natives (Jauni et al. 2015), most likely 

because of differences in life history characteristics (i.e. faster growth, higher fecundity, 

more efficient dispersal of seeds, higher fitness, higher resource-use efficiency; Funk & 

Vitousek 2007; Pyšek & Richardson 2008; Van Kleunen et al. 2010). Non-native species more 

rapidly colonize new areas and become established at disturbed sites than natives (Lake & 

Leishman 2004; Tierney & Cushman 2006), therefore hindering subsequent colonization by 

natives.  

Revegetation as a tool to reduce invasions after a disturbance  

According to the resource fluctuation theory (Davis et al. 2000), a reduction of invasive 

species seedling establishment after a disturbance may be achieved by a quick reduction of 

available resources (Figure I.4). Decreasing soil fertility through soil amendments or topsoil 

removal has shown to lower invasions but may cause side effects on soil structure and 

chemistry (van der Berg et al. 2003), as well on soil fauna (Vergeer et al. 2006), and can be 

highly expensive (Perry et al. 2010). A way to efficiently decrease soil resources is to actively 

restore a vegetation cover (Kettenring & Adams 2011).  

Establishing a vegetation cover rapidly after a disturbance may quickly sequester available 

resources, such as soil nutrients, light, space and water (D’Antonio et al. 2001; Perry & 

Galatowitsch 2006), efficiently reducing invasions or reinvasions (Byun et al. 2018; Byun & 

Lee 2017; Frankow-Lindberg 2012; Iannone III et al. 2008; Iannone III & Galatowitsch 2008; 

Kettenring & Adams 2011; Larson et al. 2013; Middleton et al. 2010). The indirect interaction 

between individuals or species associated with a requirement for shared limiting resources 
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is called exploitative competition (or resource competition), which results in the reduction 

in one or more fitness components at the individual level or at the population level (Goldberg 

et al. 1999). Exploitative competition may be a major determinant of biotic resistance of plant 

communities in the early establishment stages (Frankow-Lindberg 2012; Iannone III & 

Galatowitsch 2008). For instance, establishing a diverse community that reduced both light 

and nitrogen decreased the establishment of the invader Phalaris arundinacea by 67% 

(Frankow-Lindberg 2012). 

Revegetation may be particularly efficient against early invasions when the restored species 

preempt the largest amount of limiting resources as quickly as possible (Figure I.4). 

Establishing a community displaying rapidly a strong invasion resistance should allow (1) 

reducing invasibility when the ecosystem is the most vulnerable (i.e. immediately after a 

disturbance, when resource availability is high; Figure I.4), and (2) targeting the invader at 

the seedling stage, which is one of the most vulnerable stage in the life cycle of a plant 

(Kitajima & Fenner 2000).  

Figure I.4 Schematic representation of resource availability and invasibility over time after a 

disturbance, depending on different revegetation scenarios. According to the resource fluctuation 

theory (Davis et al. 2000), invasibility is strongly determined by resource availability (other components 

that may influence invasibility, e.g. herbivores, pathogens, are not depicted here). Many disturbances 

increase resource availability or space (Temperton et al. 2004) and so is invasibility. Resource 

availability and invasibility naturally fluctuate over time. After a disturbance that remobilize resources 

and increase invasibility, the absence of active revegetation may lead to a slow recovery of vegetation 

through natural dispersal from surroundings. In this case, resource availability and invasibility may 

slowly decrease as plant community develops. The efficiency of active revegetation against plant 

invasions then depends on the ability of the reestablished species to quickly and strongly sequester 

available resources. 

  



General Introduction 

10 

 

Characteristics of recipient communities affects early invasion success 

Not all plant communities are equally resistant to invasions. A significant number of studies 

explored how certain community characteristics contribute to invasion resistance, with a 

particular focus on species diversity and identity (Connolly et al. 2017; Dukes 2002; Fargione 

& Tilman 2005; Hector et al. 2001; Kennedy et al. 2002; Lavorel et al. 1999; Levine & D’Antonio 

1999; Naeem et al. 2000; Tilman 1997; Wardle 2001), particular traits (Byun & Lee 2017; 

Drenovsky & James 2010; Moravcová et al. 2015), or phylogenetical or trait similarity with the 

invader (Abella et al. 2012; Emery 2007; Larson et al. 2013; Price & Pärtel 2013; Yannelli et al. 

2017). Recently, the influence of historical contingencies (i.e. the effect of the order and 

timing of past events, being either abiotic or biotic; Fukami 2015) in community assembly 

and invasion has regain attention through the study of priority effects, which arise when 

early-arriving species affect the establishment, survival, growth or reproductive success of 

later-arriving species (Helsen et al. 2016). Priority effects may be particularly impactful in the 

early growth stages (i.e. first growing season; Körner et al. 2008; Plückers et al. 2013; von 

Gillhaussen et al. 2014), and may influence early invasive species establishment success. For 

instance, Grman and Suding (2010) found that giving a five-week advance to native species 

reduced invasive species biomass by 85%, against 8% when planted simultaneously. Taking 

advantage of priority effects during revegetation procedures and communities restoration 

may therefore be a powerful tool to reduce invasive species establishment after a 

disturbance. However, how priority effect strength is affected by community attributes such 

as species identity, diversity, density or arrival timing has only been subjected to few 

investigations.  

Many studies were conducted on mature communities and aimed at studying long-term 

trends, without considering early establishment stages. Therefore, determinants of early 

invasion success (i.e. successful germination and seedling establishment) are still poorly 

understood.  
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I.3 | Thesis aim and organization 

This thesis aims to identify and test key drivers of community resistance to invasion in the 

early growth stages and to define the consequences for field application and management 

of invasive species. 

The first step consisted in identifying the mechanisms that may be involved in early invasion 

resistance and that could be manipulated to design resistant plant communities. I focused 

on two mechanisms that may be particularly influential: (1) limiting similarity, stating that 

competitive exclusion will limit the coexistence of species sharing the same ecological niche 

(Abrams 1983), and (2) priority effects, which occur when early colonizing species inhibit or 

facilitate the establishment, growth or reproductive success of later arriving species (Helsen 

et al. 2016).  

In Chapter 1, I explored the use of limiting similarity for controlling early invasion, by asking 

the following questions: 

 

In Chapter 2, I investigated the manipulation of priority effects to reduce early invasion by 

addressing the following questions:  

 

These two chapters revealed limitations to an efficient application of limiting similarity to 

hinder plant invasions and encouraging results for manipulating priority effects. Two 

experiments were then carried out with the aim of experimentally manipulating priority 

effects and investigating the consequences on invasion resistance. 

 

  

Research question: 

Is limiting similarity a main mechanism involved in early invasion resistance? 

In terms of application: 

Is limiting similarity applicable and effective in controlling early invasion?  

 

Research question: 

Are priority effects a main mechanism involved in early invasion resistance? 

In terms of application: 

Can priority effects be used after disturbance, in a restoration context, to design plant 

communities resisting early invasion? 
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Chapter 3 reports the results of a first greenhouse experiment, which investigated:  

 

Chapters 4 and 5 describe the results of a second greenhouse experiment where assembly 

history of the recipient community was manipulated.  

 

Chapter 4 focuses on invasive species responses, asking: 

 

Chapter 5 focuses on recipient community responses, asking: 

 

 

Research question: 

How do invasion timing (i.e. elapsed time between recipient community sowing and 

invasive species introduction), recipient community composition and sowing density 

interact to influence priority effects and early invasion success? 

In terms of application: 

Does providing efforts to delay invasion and manipulating the composition and density 

of seed mixes constitute efficient strategies to reduce early invasion? 

 

Research question: 

Does assembly history of the recipient community (timing of species establishment and 

identity of the first arriving species) influence early invasion resistance? 

In terms of application: 

Is sequential sowing a possible way to reinforce early invasion resistance?  

Research question: 

Does the identity of the first native established species influence early recipient 

community structuring and priority effects? 

In terms of application: 

Should we consider the order of native species arrival when implementing a priority 

effect-based revegetation strategy? 
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Thesis organization is summarized in the Figure I.5 below:  

 

Figure I.5 Thesis organization. 
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Transition to Chapter 1 

 

In Chapter 1, I focus on the concept of limiting similarity which has been considered for the 

design of invasion resistant plant communities until recently (e.g. Funk et al. 2008; Price & 

Pärtel 2013; Yannelli et al. 2017). Through a critical review of the literature, I explore the 

theoretical and practical issues raised by the application of limiting similarity to design 

invasion-resistant plant communities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure T.1 Chapter 1 in thesis organization. 
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Using limiting similarity to enhance invasion 

resistance: theoretical and practical concerns 
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Chapter 1 

 

Abstract 

1. The control of invasive species is a central topic of both applied and theoretical research. 

Understanding how and which ecological theories can be used to improve invasion 

resistance of plant communities is essential, to design effective control strategies. 

2. The theory of limiting similarity, stating that coexistence between species is more limited 

by competitive exclusion when species share niche properties, is often considered by applied 

ecologists as a possible approach to limiting plant invasions at the local scale. 

3. The complexity of measuring ecological niche overlap between species as well as the 

difficulty of disentangling niche from fitness processes currently limit the demonstration 

and application of this theory. Limiting similarity appears to operate at a time-scale that is 

too long for efficient impact on invasive species' early establishment. It may also be 

ineffective against invasions in the long-term, due to environmental changes and community 

instability. Finally, limiting similarity is not applicable to the most common situations, where 

there are multiple co-occurring invasive species or no prior identification of potential 

invasives. 

4. Synthesis and applications. Whether the theory of limiting similarity, predicting 

competitive exclusion when species display niche similarities, can be successfully applied to 

limit plant invasions—or not—is an important issue for practitioners facing invasive species. 

In practice, using limiting similarity to design invasion-resistant plant communities appears 

to be complex, ineffective and unsuitable for most common situations.  

Keywords: biotic resistance, coexistence, competitive exclusion, ecological niche, fitness, invasive 

species, restoration 
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1.1 | Introduction 

Invasive species are a key driver of biodiversity loss worldwide (McGeoch et al. 2010). 

Controlling them (as a conservation objective) is a central topic of both applied and 

theoretical research (Catford et al. 2009; Davis et al. 2000; Hallett 2006; Shea & Chesson 

2002; Tilman 2004). Many studies suggest that more resources are invested in post-invasion 

control and impact reduction than in prevention or early intervention (Simberloff et al. 2013). 

In this regard, the establishment of a native resistant plant cover after a disturbance (e.g. 

after restoration activities implying vegetation clearing) is increasingly recommended to 

impair invasive plant species colonization and local spread (Byun et al. 2018). One of the 

ecological theories explored by applied ecologists seeking to improve the invasion resistance 

of plant communities is limiting similarity. The limiting similarity theory derives from the 

classical niche theory, which states that a species persists under a specific range of 

conditions (Hutchinson 1959) and that an overlap in ecological niche with another species 

can prevent establishment in a community (Case 1983; Diamond 1975; MacArthur & Levins 

1967). Limiting similarity theoretically means that competitive exclusion will limit the 

coexistence of species sharing the same ecological niche (Abrams 1983; Funk et al. 2008; 

MacArthur & Levins 1964, 1967). This hypothetical competitive exclusion is therefore 

considered as a possible way to reinforce the biotic resistance of native communities (Funk 

et al. 2008; Yannelli et al. 2017). In practical terms, attempts to apply limiting similarity 

involve reassembling plant communities so that the dominant species' ecological niche is 

similar to that of a target invader. Price and Pärtel (2013) examined experimental evidence 

of limiting similarity in invasion resistance and found partial support in artificial 

communities. In this paper, we go further by challenging the theoretical and practical issues 

raised by the application of limiting similarity to design invasion-resistant plant 

communities. We aim at answering the following question: Can we predict the competitive 

impact of a plant community by measuring niche overlap and therefore applying limiting 

similarity to enhance invasion resistance, and if so, would it be an efficient approach? 

1.2 | Applications of limiting similarity involve oversimplification 

A species' ecological niche (hereafter termed ‘niche’) is usually defined as an n-dimensional 

hypervolume (Hutchinson 1957), characterized by axes of resource use and/or 

environmental conditions within which populations are able to maintain a long-term average 

net reproductive rate ≥1 (Gause 1934; Silvertown 2004). Originally, this concept was 

introduced to emphasize the role of habitat and food in defining the niche of an animal 

(Chase & Leibold 2003). Unlike in many animal communities, plants' coexistence is not 

explained by the trophic niche: all plants consume the same resources (light, water, CO2, 

nitrogen, phosphorus, potassium and other macro- and micronutrients; Silvertown 2004). 

Two niches are hypothesized to be different if there are differences (1) in resource use across 

time and space, (2) in the ratios of limited resources required and (3) in the conditions for 

regeneration, or if there is complementarity of life-forms (Cody 1986; Grubb 1985; Tilman 

1982). Thus, the niche appears to be a complex, multidimensional concept that currently 
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escapes comprehensive description. Niche differentiation is therefore usually described on 

a very limited number of axes, such as environmental (e.g. hydrology, salinity, soil texture or 

drought) or resource gradients (e.g. light or nitrogen; Silvertown 2004), although some 

studies also include space and/or time (Fargione & Tilman 2005).  

In demonstrations or applications of the limiting similarity theory, niche overlap between 

species is reduced to similarities quantified by measuring functional traits. The rationale is 

that these traits relate both to strategies of resource capture and to the effect on the overall 

pool of resources; they are effect and response traits (Goldberg 1996; Lavorel & Garnier 2002; 

McGill et al. 2006). Different groups based on similarities in growth form or other 

morphological or phenological trait similarities have been defined, assuming that species 

from the same group should have greater niche overlap and compete more intensively than 

species from different groups (Johansson & Keddy 1991; MacArthur & Levins 1967). However, 

most studies found no or very limited support for limiting similarity in invasion resistance 

(Abella et al. 2012; Byun & Lee 2017; Cleland et al. 2013; Daneshgar & Jose 2009; Emery 2007; 

Eriksson et al. 2006; Fargione et al. 2003; Funk & Wolf 2016; Larson et al. 2013; Longo et al. 

2013; Oster & Eriksson 2012; Prieur-Richard et al. 2000; Turnbull et al. 2005; Von Holle 2005; 

Yannelli et al. 2018). While such failures do not necessarily invalidate the limiting similarity 

theory, they are probably due to an inability to reach the domain of validity of this theory. 

For instance, there may be an insufficient degree of niche overlap between selected native 

and invasive species, or perhaps niche processes are not a determining factor in invasion 

resistance. 

1.2.1 | Getting the degree of niche overlap right is complex  

‘What degree of niche overlap is required for competitive exclusion?’ is one key question 

that needs to be answered before limiting similarity can be applied successfully. Several 

categories of similarities between native and invasive species have been explored: in growth 

form (e.g. C3-grasses, C4-grasses, non-leguminous forbs and legumes; Emery 2007; Fargione 

et al. 2003; Prieur-Richard et al. 2000; Symstad 2000), in life longevity and phenology (e.g. 

annuals, perennials, early or late seasonal plants; Abella et al. 2012; Cleland et al. 2013; Larson 

et al. 2013), in morphology (e.g. woodiness, height, presence of taproot; Byun & Lee 2017; Von 

Holle 2005) and/or in physiology (e.g. specific leaf area, relative growth rate, leaf dry-matter 

content; Byun & Lee 2017). The findings from most studies do not support limiting similarity 

as an efficient, robust way to limit early establishment of invasive species. Among other 

explanations, this may be because the degree of niche overlap was insufficient to induce 

competitive exclusion. 

1.2.2 | Limiting similarity may have less impact than differences in fitness on 

early establishment success 

A non-negligible role of limiting similarity has indeed been demonstrated in plant 

community assemblage (i.e. more trait divergence between species of a local assemblage 

than expected under a random null model; Armbruster 1986; Fukami et al. 2005; Mason & 
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Wilson 2006; Stubbs & Bastow Wilson 2004; Wilson 2007; Wilson & Whittaker 1995) but see 

(Mahdi et al. 1989), as well as in invasiveness (i.e. functional similarity to native species 

facilitates naturalization but hinders invasion; Divíšek et al. 2018; Hamilton et al. 2005). 

However, its role in early establishment success at the local scale may be limited compared 

with the effect of differences in fitness (Funk & Wolf 2016; Kunstler et al. 2012). Fitness 

advantage can arise from greater ability to effectively use resources in a specific range of 

environmental conditions (Freckleton & Watkinson 2001; Keddy & Shipley 1989; Mesléard et 

al. 1993), resulting in a competitive hierarchy (Fargione et al. 2007; Herben & Goldberg 2014). 

Competitive hierarchies have been shown to occur within functional groups (Turnbull et al. 

2004, 2005; Wedin & Tilman 1993), contrary to the within-group equivalence predicted by 

limiting similarity (Hubbell 2001). Accordingly, specific trait values—not necessarily similar 

to those of the target invader—such as high specific root length (Daneshgar & Jose 2009; 

Funk & Wolf 2016), large size or height (Byun & Lee 2017), high growth rate (Symstad 2000), 

or early access to limiting resources (Longo et al. 2013) have been linked to increased 

invasion resistance (Drenovsky & James 2010). Moreover, competition can be intense 

between functionally distant species (e.g. between lianas and trees; Schnitzer et al. 2005). 

Fitness inequality can also arise from a size-related competitive advantage generated 

through priority effects (Wilsey et al. 2015), where the species established first sequester 

resources, thus depriving later colonizers (Byun et al. 2013; Fukami 2015; Vance 1984). Giving 

reassembled native species a short time advance (i.e. a few weeks) has been shown to create 

strong priority effects, successfully decreasing invasive species success (e.g. Byun et al. 2013; 

Grman & Suding 2010; Vaughn & Young 2015; Young et al. 2016). Several studies concluded 

that difference in fitness is more important than similarity in niche in determining invasion 

resistance, at least in the short term (Byun et al. 2013; Byun & Lee 2017; Firn et al. 2010; Funk 

& Wolf 2016; Grman & Suding 2010; Kunstler et al. 2012; Larson et al. 2013; Prieur-Richard et 

al. 2000; Wang et al. 2013). 

Moreover, disentangling niche from fitness processes is not easy, especially when only one 

invader is tested (e.g. Byun et al. 2013; Dukes 2002; Sheley & James 2010; Symstad 2000; 

Walder et al. 2018). When a resident species is the most effective in decreasing the success 

of an invader belonging to the same functional group, it is impossible to conclude on whether 

the effect is due to differences in niche or in fitness: the experimental design makes it 

difficult to rule out the possibility that a similar response could have been observed with 

invaders from other functional groups, which would support differences in fitness as being 

more important than niche similarity. 

1.3 | Limiting similarity may take too long to act 

There are several reasons to believe that limiting the establishment of an invasive species 

demands rapid and robust inhibition of invasive species seedling emergence and survival. 

The seedling stage offers a critical window of opportunity to control invasive species 

effectively, for two main reasons. First, the seedling stage is the most vulnerable stage in the 

life cycle of plants (Baskin & Baskin 1998; Fenner et al. 2005). Second, invasive species often 
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exhibit a high growth rate (Dawson et al. 2011; Marushia et al. 2010; Rejmanek & Richardson 

1996) and strong priority effects (Dickson et al. 2012; Stuble & Souza 2016; Wilsey et al. 2015), 

thus rapidly becoming competitively superior after establishment (Martin & Wilsey 2012). 

Competitive exclusion via limiting similarity, which may take several generations (Passarge 

et al. 2006), may therefore act at too long a time-scale to successfully hamper invasive 

species colonization (Abrams 1983; Price & Pärtel 2013; Stohlgren et al. 2008; Symstad 2000). 

Seedlings are not necessarily functionally similar to adults (Hooper & Dukes 2010), meaning 

that it would take too long for the resident species to affect functionally similar invasive 

species. In support of this, Price and Pärtel (2013) found less effect from limiting similarity 

on invader colonization (germination, establishment or seedling survival) than on 

performance (biomass, cover or growth). Limiting similarity thus appears to be an 

inappropriate approach to hindering the early establishment of invasive species. 

But is limiting similarity any more appropriate for limiting invasive species success in the 

long-term? Its long-term efficiency relies heavily on the stability of the community over 

time, achieved by maintaining species assumed to prevent the development of similar 

invasive species. Yet, species dominance in a community can decrease over time through 

succession, raising the risk that species selected for their similarities with the target invasive 

species will lose their dominance. In this case, a reasonable hypothesis is that the 

environmental conditions will also become unfavourable for the invasive species. A more 

appropriate strategy could be to foster a diverse community where a few species are likely 

to respond favorably to changes in environmental conditions, especially if the community 

sown is dominated by perennials (Byun & Lee 2017; Corbin & D’Antonio 2004; Naeem et al. 

2000). This might be a surer bet than relying on the capacity of one or a few species 

resembling the invasive to maintain dominance under changing conditions. 

1.4 | Limiting similarity can only be applied to a single target invasive 

species 

The concept of limiting similarity is only applicable to control a single invasive species (or a 

group of species occupying the same niche). This implies that the target invasive species has 

previously been identified. The scope is thus narrowed to situations where the target 

invasive species (1) is present at the site prior to management or restoration actions (and its 

propagules are potentially present in the soil), or (2) poses a direct threat to the site through 

being established nearby. However, previously unnoticed invasive species can emerge from 

persistent seed banks (Honig et al. 1992; Pyke 1990; Shen et al. 2006) through the soil 

disturbances generated by restoration activities (Fumanal et al. 2008). Invasive species 

established several kilometers away can reach the site through long-distance dispersal 

abilities (Buchanan 1989; Renne et al. 2002; Stansbury 2001). Moreover, there are far more 

situations where several invasive species co-occur than single-invaded habitats (Kuebbing 

et al. 2013). The application of limiting similarity may therefore be ineffective in a wide range 

of common situations, such as when potential invaders are not yet identified and when 

multiple invaders co-occur. 
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All these arguments suggest that the application of the theory of limiting similarity to design 

invasion-resistant plant communities does not seem relevant in most cases. Research efforts 

should focus on strategies that quickly and significantly reduce invasive species colonization, 

and that are efficient when there are multiple co-occurring invasive species. Establishing a 

community displaying a great diversity of functional traits would allow a more effective and 

stable use of resources over time and space — and the occupation of most of the niches 

(Sheley et al. 1996). Also, when increasing the number of species in a community, 

theoretically, the probability of a species being present to be a strong competitor to invasive 

species increases (Lavorel et al. 1999). Diverse communities may therefore exhibit an 

increased invasion resistance when fully established. However, diverse communities would 

include slow growing, low competitive species that would compromise invasion resistance 

at the first stages of growth. Therefore, in a case where invasive species are already present 

in the immediate vicinity and thus threatening the site, this strategy may be less effective. 

Combining this strategy with approaches giving a rapid and strong invasion resistance, for 

example through priority effects (Hess, Mesléard, Buisson 2019), would seem a more 

promising way of effectively hinder invasive species' early establishment. 
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Synthesis of Chapter 1 and transition to Chapter 2 

 

 

In Chapter 2, I investigate, through a review of the existing literature, the possible ways to 

manipulate priority effects to reduce plant invasion or reinvasion after a disturbance. I 

explore strategies to (1) reduce priority effects generated by invasive species, and (2) create 

and enhance priority effects of reestablished native species.  

 

  

Chapter 1 in a nutshell 

Is limiting similarity a main mechanism involved in early invasion resistance? 

While there is evidence of a non-negligible role of limiting similarity in the structuring 
of natural communities, its impact on early invasion resistance may be limited since 
(1) niche overlap may lead to competitive exclusion at a longer timescale, and (2) niche 
differences may be less impactful than fitness differences in the early stages. 

Is limiting similarity applicable and effective in controlling early invasion? 

Most studies attempting to apply limiting similarity failed to increase invasion 
resistance. Limiting similarity does not appear suitable to design plant communities 
resisting early invasion as (1) measuring niche overlap between species and 
disentangling niche from fitness processes limits an accurate application, and (2) it is 
not applicable to the most common situations, where there are multiple co-occurring 
invasive species or no prior identification of potential invasives. 

Figure T.2 Chapter 2 in thesis organization. 
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Chapter 2 

 

Abstract 

Many anthropic activities generate soil disturbances, favoring competitive, fast growing 

invasive plant species at the expense of natives. Active restoration of invasion-resistant plant 

communities is increasingly recognized as a relevant strategy to combat invasive plant 

colonization in disturbed areas, but results are often unsatisfying. Historical effects, referred 

as ‘priority effects’ (i.e. the effects generated by the order in which species arrive at a local 

site), can have a major role in community assembly and invasion success because they 

involve early colonists altering the performance of later colonists. Taking these priority 

effects into account in restoration projects is emerging as a relevant way to improve native 

species restoration success and prevent invasion. The present review discusses two 

strategies considering priority effects that would help to achieve the classic restoration goal 

of ‘more natives, less invasives’. The first strategy relies on tackling priority effects of invasive 

plants using different management options adapted to local environmental conditions, 

including removal, reduction of propagule sources, or mitigation of soil legacies. Indeed, 

invasive plants often generate strong priority effects providing themselves a substantial 

competitive advantage through early emergence and quick growth, but also self-induced soil 

modifications that can persist after their removal or death, commonly termed ‘soil legacies’. 

In fertile and stable conditions, the reduction of invasive species priority effects must be 

coupled with the restoration of an invasion-resistant native plant cover to avoid reinvasion 

and secondary invasions. The second strategy is to bring about situations in which the 

restored native species are more likely to exert strong priority effects, decreasing invasion 

success. For this purpose, we sketch possible options open to restorationists based on 

resource or non-resource mechanisms. First, we discuss ways to maximize resource 

preemption by extending the time advance given to restored native species and 

manipulating restored species characteristics. Second, we consider the potential effect of 

increasing niche overlap between native and invasive species. Third, we introduce the 

potential manipulations of non-resource mechanisms, such as allelopathy, herbivory, 

disease, or the presence of mycorrhizae, to increase priority effects. This review 

incorporates recent research on priority effects to draw the outlines of priority effect-based 

restoration strategies and define future research questions that need to be addressed to test 

and improve these strategies. 

Keywords: invasion resistance, restoration, community assembly history, historical contingency, order 

of arrival, legacy 
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2.1 | Introduction 

The vast literature on biological invasions since Elton’s seminal work (Elton 1958) testifies to 

the complexity of understanding the processes underlying invasion success (Hayes & Barry 

2008; Levine et al. 2003; Simberloff et al. 2013). According to deterministic theories, the 

outcome of an invasion depends on interactions between the invader and the physical and 

biological characteristics of the recipient environment (Lonsdale 1999; Williamson 1999). The 

intrinsic competitive superiority of invasive plant species (i.e. species introduced outside of 

their distribution areas which are able to grow and proliferate to become an autonomous 

viable population, and whose expansion can negatively impact local species and ecosystems; 

(Mooney 2005; Richardson, Pyšek, et al. 2000) in acquiring resources has long been 

considered the critical mechanism determining invasion success (Pyšek & Richardson 2008; 

Sax & Brown 2000; Vilà & Weiner 2004). However, invasive species performance also appears 

to depend on the physical and biological conditions encountered in the introduced range: 

resource availability and fluctuation (D’Antonio et al. 2017; Davis et al. 2000; Firn et al. 2010; 

Shea & Chesson 2002), multi-trophic interactions involving enemies (Mitchell et al. 2006), 

and resident plant community composition (Fridley et al. 2007; Levine & D’Antonio 1999). In 

addition to the deterministic explanations, stochastic dispersal and historical processes also 

play a crucial role in determining invasion success (Chase 2003; Dickson et al. 2012; Hubbell 

2001; Kolar & Lodge 2001; Lockwood et al. 2005; Wilsey et al. 2015; Young et al. 2015). 

Stochastic colonization combined with deterministic interactions between early and later 

colonizing species lead to priority effects (Case 1990; Chase & Myers 2011), where early-

arriving species affect the establishment, survival, growth or reproductive success of later-

arriving species (Helsen et al. 2016). There is growing evidence that priority effects play a 

crucial role in community assembly, especially in productive environments (Aronson & 

Galatowitsch 2008; Chase 2003; Körner et al. 2008; Young et al. 2016) and can be implicated 

in invasion success (Abraham et al. 2009; Corbin & D’Antonio 2004; Grman & Suding 2010; 

Seabloom et al. 2003). One mechanism prevalent in priority effects is resource preemption 

(Fukami 2015; Young et al. 2001): the reduction of available resources (e.g. space, light, 

nutrients) by the early colonizers (Vance 1984). This mechanism may allow even weak 

competitors to persist and maintain long-term dominance (Chase 2010; Ross & Harper 1972). 

Priority effects also arise from alterations of biotic (e.g. soil microorganisms) and abiotic (e.g. 

nutrient dynamics, allelochemicals) components of the environment, which can, in some 

contexts, limit colonization by subsequent colonizers (Corbin & D’Antonio 2012; Kourtev et 

al. 2002; Mangla & Callaway 2008). Disturbances leading to the removal of most or all plant 

individuals in a habitat patch initiate a new round of community assembly (Fukami 2015), 

often favoring competitive, fast growing invasive species at the expense of natives (Davis et 

al. 2000; Hobbs & Huenneke 1992). Because of the well-recognized issues raised by invasive 

species (i.e. human health, crop production, native biodiversity, economic; Kolar & Lodge 

2001; Simberloff 2013; Vitousek et al. 1997) and because of the evolution of legal framework 

on invasive species (at least in Europe; Regulation (EU) No 1143/2014), there is clearly an 

urgent need to develop effective strategies to limit invasions, particularly in newly disturbed 
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areas. However, although active restoration of plant communities is increasingly recognized 

as a relevant tool to combat invasions (Byun & Lee 2017; Hazelton et al. 2014; Middleton et al. 

2010), results are often far from satisfactory (Kellogg & Bridgham 2002). This has notably 

been attributed to a failure to account for priority effects, which may play a decisive role in 

restoration success (Grman & Suding 2010; Temperton et al. 2004; Wilsey et al. 2015; Young 

et al. 2001). Priority effects appear to offer a cost-effective approach to combatting invasive 

plant species (Chadwell & Engelhardt 2008), but have only been recently considered for 

invasive species management. Here, we discuss two non-exclusive restoration strategies to 

achieve the end goal ‘more natives, less invasives’. The first strategy consists in tackling 

priority effects generated by invasive species, while the second is to bring about situations 

in which the native species are more likely to exert strong priority effects. 

2.2 | Dealing with invasive species priority effects 

2.2.1 | Priority effects are particularly advantageous to invasive species 

Phenological differences between invasive and native species can substantially contribute to 

invasion success (Wolkovich & Cleland 2011). Distinct phenology allows certain invasive 

species to fill vacant phenological niches and profit from temporally available space and 

resources (e.g. light, nutrients, pollinators), sometimes creating seasonal priority effects (i.e. 

priority effects operating seasonally on a within-year scale; Wolkovich and Cleland, 2011). 

Numerous invasive species shares the strategy of being active early in the season as to get 

an early access to resources and acquire a competitive dominance (Dyer & Rice 1997; Munter 

2008; Seabloom et al. 2003; Wolkovich & Cleland 2011), but others also profit of being active 

late in the season (e.g. in California, the invasiveness of Centaurea solsitialis arises from 

extending its growing season into the summer when competition from winter annual 

vegetation for soil water is minimal; Gerlach & Rice 2003). Several studies reported that 

invasive species generate stronger priority effects than natives (Dickson et al. 2012; Stuble & 

Souza 2016; Wilsey et al. 2015 but see Cleland et al. 2015). The generally higher growth rate 

of invasive species (Dawson et al. 2011; Grotkopp et al. 2010; Marushia et al. 2010; Rejmanek 

& Richardson 1996; Reynolds et al. 2001) was suggested to underlie this advantage (Dickson 

et al. 2012; Stevens & Fehmi 2009). A higher growth rate creates a greater asymmetry in plant 

size (Weiner 1990), resulting in a stronger competitive suppression of the later arriving 

species (Dyer & Rice 1999; Ejrnaes et al. 2006; Perry et al. 2003). Cleland et al. (2015) found 

that the stronger priority effects of invasive species were correlated to regeneration trait 

values, such as higher germination rate and higher light capture during seedling stage, 

reflecting higher biomass. In addition to these seasonal advantages, invasive species can also 

profit from priority effects through self-induced soil condition modifications, whether 

biological, chemical or physical (Corbin & D’Antonio 2012). Modifications such as: (1) shifts in 

nutrient cycling (Ehrenfeld 2003; Flinn et al. 2017; Marchante et al. 2008) and soil salinity 

(Novoa et al. 2013), (2) changes in soil microbial communities including pathogens and 

mycorrhizal fungi (Hawkes et al. 2006; Kardol et al. 2007; Kourtev et al. 2002; Lorenzo et al. 

2010; Mangla & Callaway 2008; Stinson et al. 2006), and (3) the release of allelochemicals 
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(Bais et al. 2003; Grove et al. 2012; Milchunas et al. 2011; Stinson et al. 2006) can all generate 

priority effects enhancing invasive species performance and inhibiting native plant species 

(Figure 2.1A; Meisner et al. 2014; Reinhart & Callaway 2006; Rodriguez-Echeverria et al. 2013; 

Stinson et al. 2006; van der Putten et al. 2013). Such invader-mediated soil modifications can 

persist after the causal invasive species is removed or dies (Corbin & D’Antonio 2012; Hacker 

& Dethier 2009; Hamman & Hawkes 2013), and are commonly termed ‘soil legacies’ (Figure 

2.1B). 

 

Figure 2.1 Mechanisms driving the consequences of priority effects when the plant individual is 

present (A), or has been removed or died (B). (A) Early arriving species can limit colonization success of 

subsequent colonizing species by gaining a size-related competitive advantage, by generating positive 

plant-soil feedbacks improving its own performance, and by modifying soil conditions. Priority effects 

are asymmetric between native and invasive species, so that invasive species are less impacted by 

arriving late compared with natives. (B) Plants can also generate priority effects through soil legacies 

after they were removed or died, that can impact subsequent colonization. While, for many invasive 

species, persistent soil legacies have been reported to hinder invasive recolonization, little is known 

about how native species soil legacies could limit invasive species establishment. Note that Grman and 

Suding (2010) found no impact of native species legacies on invasive species success. 

2.2.2 | Countering invasive species priority effects 

When it comes to decrease the competitive dominance of an invasive plant species, it is 

essential to look for abiotic conditions to determine what actions need to be undertaken. In 

environments with high nutrient resource and water availability, the presence of invasive 

species could particularly hinder restoration of native communities because of their high 

competitive abilities (Abraham et al. 2009; Cox & Allen 2008; Grman & Suding 2010). 

Countering invasive species competitive advantage can be achieved by applying intensive 

management techniques to reduce invasive species cover (i.e. herbicide applications, 

mechanical removal; Figure 2.2). Marushia et al. (2010), by applying control methods 

(herbicide application) early in the season, tackled rapid and early emerging exotic annuals 

while minimizing impacts on native plants. In favorable conditions, many invasive species 

are likely to invade in response to the removal of one or more invaders (D’Antonio et al. 2017). 

Thus, it is particularly relevant to reduce propagule sources in order to limit invasive species 
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recolonization (Figure 2.2; D’Antonio et al. 2017). Common methods to decrease non- 

desirable species seed bank include topsoil removal (Hölzel & Otte 2004), effective mowing 

management (i.e. adjusted to phenological development; Milakovic et al. 2014) and artificial 

flushing of invasive species to induce germination, followed by lethal interventions such as 

tillage or herbicide application (Wolf & Young 2016). Prescribed burns for fire-prone species 

or supplying water are two techniques promoting germination (Ooi 2007; Wolf & Young 2016) 

that could be used to flush invasive plant species and tackle seasonal priority advantage early 

in the season (Wainwright et al. 2012; Wilsey et al. 2015; Wolkovich & Cleland 2011). 

Establishing early-emerging and competitive native species (e.g. cover crops) is another 

option that can help reducing competition from early-germinating invasive species. Indeed, 

restoring early-emerging species can directly decrease invasive species performance 

(Blackshaw et al. 2006) and indirectly favor desired native species (Perry et al. 2009). 

However, so far, these strategies are little explored. To successfully counter seasonal priority 

effects generated by invasive species, it is crucial to better understand invasive species 

phenology, requirements and possible interactions with native species, so as to improve 

existing management techniques (i.e. artificial invasive species flushing, the use of cover 

crops) and develop new ones. 

To limit reinvasion and secondary invasions, invasive species reduction must be coupled 

with revegetation strategies (Figure 2.2; Pearson et al. 2016) directed towards the limitation 

of multiple co-occurring invasive plant species. However, because of soil legacies, invasive 

species removal and propagule pressure reduction are sometimes unlikely to lead to 

recovery of native communities (Corbin & D’Antonio 2012; Ehrenfeld et al. 2005; Jordan et al. 

2012; Suding et al. 2004; van der Putten et al. 2013), and often favor secondary invasions 

(Dickie et al. 2014; Grove et al. 2015; Yelenik & D’Antonio 2013). When the site was invaded 

prior to disturbance, it may then be necessary to include measures to deal with soil legacies, 

rather than simply eliminate invasive species populations (Figure 2.2). Soil legacies can be 

mitigated by adjusting soil properties, typically via topsoil removal or soil amendments 

(Buisson et al. 2008; Kulmatiski & Beard 2006; Perry et al. 2010). Carbon addition can help 

lowering nitrogen availability by stimulating nitrogen immobilization (Baer et al. 2003), 

thereby reducing invasive species performance and concurrently increasing desired species 

growth (Alpert & Maron 2000; Blumenthal et al. 2003; Eschen et al. 2007; see Perry et al. 2010 

for review). However, in the case of restored communities reassembling from seeds, nitrogen 

management may have no direct positive effect unless a head-start is given to natives (i.e. 

invasive species are controlled the first growing season; James et al. 2011). Furthermore, 

success of carbon addition to decrease invasive species dominance also mainly depends on 

the condition that invasive species is nitrophilic relative to native species (Blumenthal et al. 

2003). 

To face soil legacies, another restoration approach is to establish species that are tolerant 

to invasive species legacies (Perry et al. 2005), or that could mitigate legacies before 

establishing the target community (Eviner & Hawkes 2012; Jordan et al. 2008; Leger & 

Baughman 2015; Vink et al. 2015). In this sense, restoration of non-susceptible species to 
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Centaurea maculosa’s allelopathic compounds prevented reinvasion and possibly facilitate 

native species recovery (Callaway et al. 2005; Thorpe et al. 2009). Herron et al. (2001) also 

showed that establishing native species decreasing nitrogen availability through high 

nitrogen uptake decreases the prevalence of invasive species favored by soil nitrogen 

enrichment. 

Taking soil legacies into account in restoration projects is however challenging. Soil legacies 

are difficult to predict and to assess (involving chemical analyses, determination of microbial 

communities’ abundance and composition), and are species-specific (Bardgett & Wardle 

2010; Bezemer et al. 2006; Yelenik et al. 2007). Furthermore, their persistence depends on 

characteristics of the invaded ecosystem (e.g. soil mineralization rates; Stock et al. 1995), on 

their nature (Corbin & D’Antonio 2012; Levine et al. 2003), and on the duration of invasion 

(Kulmatiski & Beard 2011; Marchante et al. 2008). For example, while allelopathic compounds 

are generally short-lived in the soil (i.e. hours to days; Blair et al. 2005; Reigosa et al. 2006), 

increased nitrogen levels generated by a nitrogen-fixing invasive species can persist for 

decades (e.g. 35 years; Maron & Jefferies 2001). Long-term studies suggest, however, that 

invasion impacts on ecosystems, such as increased nitrogen levels, can shift over time 

(Yelenik & D’Antonio 2013). All this makes it hard to predict the amplitude and persistence of 

soil legacies for a particular invasive species in a given environment, and calls for high levels 

of costly technical expertise. Thus, soil legacies are not systematically given the weight they 

deserve in restoration projects. Yet restoration would clearly benefit from accounting for 

soil legacies, especially when an invasive species is implicated in strong and persistent 

legacies and has dominated the target environment for several growing seasons (Figure 2.2; 

(Kulmatiski & Beard 2011; Marchante et al. 2008). A better understanding of how invasive 

species induce strong and persistent soil legacies in the habitat they commonly invade would 

reduce the need for complex and expensive analyses, facilitating development of effective 

restoration strategies. Cost-effective methods, such as native species germination or 

survival tests on soil with potential legacies should be developed to rapidly assess their 

extent.  

In harsh environments with extremely limited resources and/or stressful conditions (e.g. 

extreme temperatures, excessive solar radiation, unstable substrates), invasive species 

removal often lead to a lower success of a native cover restoration (D’Antonio & Meyerson 

2002). In some cases, invasive species are used as nurse plants to facilitate the establishment 

of native species (Figure 2.2; Becerra & Montenegro 2013; Hanslin & Kollmann 2016). The 

removal of an invasive species may not result in additional invasions (D’Antonio et al. 2017): 

the likelihood of other stress-adapted species being present and able to respond quickly is 

low (Harms & Hiebert 2006), and these systems constrain species to low productivity or 

capacity to accumulate biomass (D’Antonio et al. 2017). Managers may therefore have ample 

time to control a secondary invasive species because they commonly have low population 

growth rates (Funk & Vitousek 2007). 
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Figure 2.2 Decision support to counter invasive plant species priority effects. When invasive species 

facilitate the establishment of natives (e.g. in some harsh environments), they should not be removed 

and can be used as nurse species for restored species. Conversely, when invasive species hinder native 

species establishment (e.g. in some fertile and stable environments), it is essential to decrease their 

abundance and prevent secondary invasions, notably via removal and seed bank reduction. After 

removal, soil legacies generated by invasive species can lower restoration success. These legacies 

should be particularly considered when the removed invasive species is known to produce strong 

and/or persistent legacies (e.g. nitrogen levels), and/or or was present in abundance and/or for long 

duration. Legacies mitigation methods such as topsoil removal, amendments (e.g. carbon addition), or 

intermediate planting should be adjusted to the nature and intensity of legacies. Finally, the restoration 

of native species adapted to local conditions and invasion pressure should be undertaken to limit 

reinvasion and secondary invasions, except when revegetation facilitates invasions (e.g. in some harsh 

environments). 
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2.3 | Strengthening native species priority effects 

Restoring native communities after a disturbance can have opposite consequences on 

invasion success depending on abiotic conditions. In harsh environments, native species can 

create microclimatic conditions that are more favorable to invasive species establishment 

than the surrounding (Cavieres et al. 2005; Lenz & Facelli 2003; Mason et al. 2013). In such 

cases, the restoration of a vegetation cover may not be the best option. Removal of invasive 

species followed by the control of secondary invasions without active revegetation may be a 

more suitable strategy. Resource availability, especially nitrogen, also strongly influences 

invasion success through modifications in competition intensity between species (Davis et 

al. 2000; Davis & Pelsor 2001). Environmental harshness has also been assumed to decrease 

the importance of stochastic factors because of strong niche selection (Chase 2007; Kardol 

et al. 2013). In this sense, Kardol et al. (2013) found weaker priority effects under low nutrient 

supply. In nitrogen-limited systems, restoration of nitrogen-fixing species can also favor the 

establishment of fast-growing invasive species that overgrow and shade slower-growing 

native species (Corbin & D’Antonio 2004; Huenneke et al. 1990; Maron & Connors 1996). In 

such conditions, it may be advisable to restore a native plant cover adapted to low levels of 

nitrogen and to consider avoiding nitrogen-fixing species and soil nitrogen amendments. 

In fertile and relatively stable conditions, restoration of invasion-resistant native plant 

species is increasingly considered to protect disturbed sites from re-invasion or secondary 

invasions (Buckley 2008; Byun et al. 2013; Middleton et al. 2010; Pearson et al. 2016; Perry & 

Galatowitsch 2006). Environmental conditions influence the magnitude of priority effects 

(Collinge & Ray 2009; Kardol et al. 2013; Symons & Arnott 2014), with stronger impact in 

productive environments (Kardol et al. 2013; Young et al. 2016). The strength of priority 

effects also varies with the identity of the earlier- and the later-arriving species (Cleland et 

al. 2015; Dickson et al. 2012; Stuble & Souza 2016; von Gillhaussen et al. 2014; Wilsey et al. 

2015), invasive species being less negatively impacted by arriving late than native species 

(Figure 2.1A; Stuble & Souza 2016; Wilsey et al. 2015), raising the need to restore native species 

producing strong priority effects. 

Recent work on priority effects also states that the strength of priority effects is notably 

driven by (1) the impact a species has on resource levels (Fargione et al. 2003; Fukami 2015), 

(2) the overlap between competitive species in resource needs (Funk et al. 2008; Vannette & 

Fukami 2014), and (3) the impact a species has on non-resource components of the 

environment (Bever 2003; Goldstein & Suding 2014; Levine et al. 2004). The following 

sections will discuss how these emerging properties could be used to reinforce the priority 

effects of restored native species in invaded habitats (see Supplementary Material, Figure 

S2.1 for summary). 
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2.3.1 | Increasing resource preemption 

Does the duration of time advance matters? 

Numerous studies reported that giving native species a short time advance (one to few 

weeks) suffices to substantially decrease invasion success in grassland systems (Firn et al. 

2010; Grman & Suding 2010; Vaughn & Young 2015; Young et al. 2016). Grman and Suding 

(2010) found that native species establishment only five weeks before invasive species 

introduction reduced invasive biomass by 85%, against an 8% decrease when natives and 

invasives were planted simultaneously. Firn et al. (2010) also found a strong effect of giving a 

three-week head-start to native grasses on an invasive grass performance. However, few 

studies investigated the importance of the duration of the time interval between native 

establishment and invasive species colonization. Asymmetry in plant size has been 

advocated as one of the most important aspect of priority effects (Wilsey et al. 2015), 

suggesting that extending duration interval between native species establishment and the 

later invasion event may give a size advantage strengthening native priority effects. In this 

sense, von Gillhaussen et al. (2014) found that a six-week head-start resulted in stronger 

priority effects than a three-week head-start. Young et al. (2016) tested the effect of giving 

the native perennials a two-week or a one-year seeding advantage over exotic annuals in a 

four-year experiment. It respectively resulted in a native cover increase of 68% or 128% 

compared to when natives and exotics were sown at the same time. The positive effect of 

increasing time advance appeared however inconstant between years and sites, with 

sometimes an absence of benefit. Better understand how the duration of time advance given 

to the restored native species influence invasion success would be crucial to develop cost-

effective priority effect-based revegetation strategies. To give natives a time advantage over 

invasives, native species should be actively restored as soon as possible after the disturbance 

on an invasive species-free soil (Stevens & Fehmi 2009), and a particular attention must be 

payed to invasive species control in the initial weeks. Providing a short-term priority (several 

days) could also be achieved by ‘pre-germinating’ native species seeds. Pre-treatments 

including seed priming and cold stratification can help ensuring a rapid and complete 

germination and overcome seed dormancy (Halmer 2004). These treatments therefore 

appear as opportunities for improving native emergence speed and create priority effects 

over invasives, but remain yet untested. 

Although the eventual success of extending time advance can be judged only against the 

persistence of priority effects over long periods (i.e. more than one growing season), long-

term studies are rare. Vaughn and Young (2015) showed that the effect of a two-week 

advance in planting can remain visible after three years, favoring native perennials over 

exotic annuals. Werner et al. (2016) highlighted differences in persistence of a one-year 

priority between functional groups: the grass priority over forbs was still visible after six to 

eight years, but the forb priority over grasses did not persist. Designing efficient, cost-

effective restoration strategies that allow native species to maintain their dominance over 

invasive species in the long-term calls for more studies on mechanisms (i.e. duration of time 
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advance, disturbance regime, resource availability, dynamic of sown communities) 

influencing the persistence of priority effects over long periods. 

Manipulate species composition and density 

The resource competition model (Goldberg et al. 1990) predicts that the more a species 

reduces the availability of limited resources, the less these resources are available for later 

colonizers. Because resource preemption has been identified as one of the main driver of 

priority effects (Fukami 2015), high resource preemption would lead to strong priority effects 

(Vannette & Fukami 2014). Fargione et al. (2003) found that C4-grasses inhibited the most 

the later arriving invasive species, most likely because this guild reduced soil nitrate to the 

lowest levels compared with other tested functional guilds. This result suggests that 

restoring native species leading to a strong and rapid reduction of limited resources could 

help enhancing priority effects. Accordingly, research efforts should be directed towards the 

identification of species having the ability to (1) rapidly occupy of above- and/or below-

ground space, thereby limiting light and space availability (often considered as two primary 

determinants of invasive species germination and establishment; Corbin & D’Antonio 2004; 

D’Antonio et al. 2001; Iponga et al. 2008), and (2) rapidly and effectively preempt soil 

nutrients, especially in low productivity environments where there is likely to be less above-

ground competition for light (Dietz & Edwards 2006; Gioria & Osborne 2014). 

At small scale (10 m² or less), many studies support the widespread assumption that species 

diversity confers invasion resistance (Carter & Blair 2012; Levine et al. 2004; Levine & 

D’Antonio 1999; Tilman 1997), due to fuller use of resources by resident species 

(complementarity effect; Larson et al. 2013; Lavorel et al. 1999; Levine & D’Antonio 1999; 

Robinson et al. 1995), or due to the increased probability of a species being present to be a 

strong competitor for the invasive species when increasing the number of species in a 

community (sampling effect; Goslee et al. 2013; Kennedy et al. 2002; Lavorel et al. 1999; 

Wardle 2001). Increasing diversity has been reported to increase primary productivity in 

grassland systems (Hector et al. 2011), suggesting that diverse communities produce higher 

rates of biomass and could therefore exert a stronger asymmetric competition with later 

colonists. Two studies supported the fact that diversity strengthens priority effects in protist 

and aquatic plant communities (Jiang et al. 2011; Viana et al. 2016), but more studies 

investigating this relationship in plant communities are needed. The density of individuals 

also modulates priority effects (Weiner 1990) in the sense that establishing more individuals 

should lead to increased resource acquisition and competition intensity (Goldberg et al. 

1990; Lockwood et al. 2005). The benefit of increasing sowing density may stabilize over time, 

since the law of constant yields predicts that even-aged populations grown at different 

densities show the same overall productivity after a certain period of time, with higher 

number of individuals in high densities but lower standing biomass per individual (Drew & 

Flewelling 1979). Consistently, von Gillhaussen et al. (2014) found sowing density (1.5, 2.5 and 

5 g/m²) only had a weak influence on aboveground productivity. Increased density is 

however often associated with improved invasion resistance in short time scales (Carter & 
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Blair 2012; Gerhardt & Collinge 2007; Vaughn & Young 2015; Yannelli et al. 2017). Accordingly, 

Yannelli et al. (2017) found that sowing communities at high density (10 g/m²) is more 

effective in suppressing invasive species than low density (1 g/m²). The improved invasion-

resistance of high density community may be related to the inability of low density 

community to fully exploit available resources. Since we are looking for solutions to design 

restored communities rapidly exerting strong priority effects, increasing sowing densities is 

an attractive option. However, it remains to determine effective sowing thresholds 

depending on species used and environmental conditions. 

2.3.2 |Increasing niche overlap: applying limiting similarity 

Niche overlap, referring to resource use similarity between co-occuring species 

independent of their rate of resource consumption (Petraitis 1989; Pianka 1974), has been 

hypothesized to influence invasion-resistance (Abrams 1983; Funk et al. 2008) and more 

recently priority effects (Vannette & Fukami 2014). Niche overlap is derived from the limiting 

similarity concept, predicting that species most similar to the invasive species should 

provide greater invasion resistance because of greater overlap in resource use (Abrams 

1983). Accordingly, a high degree of similarity in resource use between first and later 

colonizers should strengthen priority effects of the recipient species. Attempts to use 

limiting similarity to limit plant invasions often resulted in failures (Emery 2007; Price & 

Pärtel 2013; Symstad 2000; Turnbull et al. 2005), highlighting the complexity of selecting 

plant species having a sufficient degree of niche overlap. With current knowledge, using the 

limiting similarity concept to limit invasions appears premature. An emerging, more 

promising strategy consists in focusing on the identification of key functional traits playing 

a substantial role in invasion resistance and priority effects (Cleland et al. 2013; Drenovsky & 

James 2010). For example, Cleland et al. (2013) identified phenology as an important 

determinant of invasion success: high phenological overlap between exotic annual grasses 

and restored forb species successfully resulted in a decreased abundance of invasive species. 

These results suggest that restoring early active perennial species may be particularly 

relevant to decrease the competitive dominance of early active annual invasive species in 

the long-term. Further investigations are needed to determine how and in which situations 

such trait-based strategies are efficient. 

2.3.3 | Manipulating non-resource components 

Few studies have explored ways to enhance invasion-resistance of restored communities by 

exploiting non-resource priority effects (Bever 2003; Levine et al. 2004) induced by the 

release of allelopathic compounds, the manipulation of mycorrhizae, or the promotion of 

pathogens or herbivory (Goldstein & Suding 2014). Non-resource priority effects could act 

through a direct negative impact on the target invasive species, or by an indirect 

improvement of native species success. 

The use of allelopathy (i.e. the exudation of chemical compounds influencing the growth of 

other plants or microorganisms) for invasive species control has received special attention, 
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especially in suppressing weeds in agricultural systems (Bhowmik 2003; Jabran 2017; Jabran 

et al. 2015; Milchunas et al. 2011). The establishment of native allelopathic species can directly 

reduce the biomass of the target invasive species (Callaway & Ridenour 2004), and indirectly 

facilitate the desired later-arriving native species (Perry et al. 2009). Indeed, allelopathy is 

relatively ineffective in interactions between species that frequently co-occur (Fitter 2003) 

and is more intense in novel interactions, such as between native and exotic species 

(Callaway & Ridenour 2004; Thorpe et al. 2009). By being established first, native allelopathic 

species could induce stronger priority effects reducing invasion success, but such 

assumption needs to be tested. Since the allelopathic effect vary depending on species (Prati 

& Bossdorf 2004), community density (Weidenhamer et al. 1989), climate conditions (Blair et 

al. 2006; May & Ash 1990), and substrate characteristics (Parepa & Bossdorf 2016), using 

allelopathic native species to limit invasion appears complex and may be limited to a set of 

invasive species. The effectiveness of invasive control strategies based on allelopathic 

species needs further investigations, in particular the potential use of native allelopathic 

species to suppress several invasive species.  

In addition to plant-plant interactions, biotic resistance can also arise from consumption by 

herbivores and disease (Levine et al. 2004). Introducing coevolved natural predators or 

parasites from the native region of the invasive species has been implemented for controlling 

well-established invasive populations, with mixed results (Clewley et al. 2012). Native 

herbivores can have various impacts on invasives (Levine et al. 2004; Maron & Vilà 2001), 

sometimes contributing (i.e. invasive plants are maladapted to deter consumption by native 

herbivores; Morrison & Hay 2011; Parker & Hay 2005; Petruzzella et al. 2017; Zhang et al. 2018) 

or not (i.e. native herbivores are maladapted to consume invasive plants; Keane & Crawley 

2002; Liu & Stiling 2006; Xiong et al. 2008) to biotic resistance. However, because herbivores 

have been reported to create disturbances facilitating the establishment of invasive species 

(Hobbs & Huenneke 1992; Mack 1989), and because young restored native species may be 

negatively impacted by trampling (Hill & Silvertown 1997), using herbivores in early stages of 

restoration may not be an advisable option. 

Mycorrhizal fungi, forming symbiotic relationships with 80–90% of terrestrial plants (Smith 

& Read 2010), often strongly influence plant growth and reproduction (Koide & Dickie 2002), 

plant community structure (Hartnett & Wilson 1999, 2002; Van der Heijden et al. 1998), and 

invasion success (Callaway et al. 2004; Klironomos 2002). Soil inoculation of arbuscular 

mycorrhizal fungi can reduce the performance of agricultural non-mycorrhizal weeds 

(Jordan et al. 2000; Rinaudo et al. 2010; Vatovec et al. 2005; Veiga et al. 2011), raising a 

potential application in managing non-hosts invasive species (e.g. from Chenopodiaceae and 

Cruciferae families; Wang & Qiu 2006). In the case of non-hosts invasive species, establishing 

species having the ability to increase mycorrhizal inoculum potential would facilitate 

arbuscular mycorrhizal fungi-dependent native species (Eviner & Hawkes 2012), and may 

enhance their competitive abilities over later arriving invasive species (Smith et al. 1998). In 

the cases where the presence of mycorrhizae increases invasion success of host invasive 

species (Marler et al. 1999; Smith & Read 2010), mycorrhizae suppression through fungicide 
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application combined with restoration of non-mycorrhizal species may help limiting invasive 

species. The feasibility and effectiveness of this approach needs however to be investigated, 

since mycorrhizae are sometimes essential in some species assemblages (Dostálek et al. 

2013). 

Overall, whether native herbivores, parasites and symbionts could create priority effects 

reducing invasive species success remains untested, so that an application in restoration is 

premature. Because interactions between invasive species and native enemies or symbionts 

are species or trait-specific (Grutters et al. 2017; Veiga et al. 2011; Zhang et al. 2018), it may 

be relevant to develop non-resource-based restoration strategies for the most noxious 

invasive species. 

2.4 | Conclusion 

Recent research suggests that better considering priority effects of both invasive and native 

species in restoration strategies could significantly help reducing invasive species 

colonization on disturbed areas. When invasive plants arrive or emerge earlier than natives, 

a size-related advantage can hamper native community restoration success, often impelling 

to reduce or remove invasive propagule sources. Yet, after removal, invasive plants can still 

threaten restoration success through persisting soil legacies, especially when the invasive 

species have long been present or when they were very abundant. The processes underlying 

the magnitude and persistence of soil legacies are however still poorly understood. Research 

efforts should be directed towards this topic, as well as towards developing cost-effective 

and rapid methods of assessing invasives-induced soil modifications. In order to avoid 

reinvasion and secondary invasions, invasive species removal must often be coupled with 

the restoration of native species. However, before undertaking revegetation, it is advisable 

to ensure that it will not lead to invasive species facilitation, such as in some harsh 

environments. 

Invasion-resistance of restored native species could be increased by manipulating resource- 

and non-resource-based priority effects, especially in productive environments. Resource 

preemption, driving priority effects, may be enhanced by extending native species time 

advance over invasives and by manipulating the characteristics of the restored native 

species. Several studies reported a high benefit of giving only few weeks of advance, and the 

amplitude of the benefit was often correlated to variations in environmental conditions (e.g. 

climate, rainfall, soil fertility). Extending time advance showed mixed results and has been 

yet poorly studied, raising the need to multiply studies in order to define durations of time 

advance which are the most effective and how this effectiveness varies depending on 

environmental conditions. Resource preemption could also be enhanced by manipulating 

the characteristics of the restored species (selecting species having traits associated to 

strong and rapid resource preemption, increasing species diversity or sowing density), but 

such strategies remain largely untested in the field. Priority effects have also been suggested 

to be influenced by niche overlap between species, but attempts to use functional 

similarities to control invasive species often showed unsatisfying results. Focusing on key 
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functional traits playing a substantial role in invasion success (e.g. phenology) appeared more 

promising, but studies are lacking to evaluate the relevance of this method. The manipulation 

of non-resource priority effects to limit invasions has been yet poorly studied. Restoring 

allelopathic native species may decrease invasion success by directly reducing the target 

invasive species biomass and indirectly facilitating native species. To investigate the 

potential of this method, research is needed on the interactions between allelopathy and 

priority effects as well as the use on the ability of native allelopathic species to suppress 

several invasive species. The manipulation of other non-resource mechanisms to increase 

priority effects of natives, such as natural enemies of invasive species or mycorrhizae, 

appears today premature. 

Combinations between different priority effect-based strategies have not been explored yet, 

but may potentially enhance invasive species control. When invasive species are present, it 

may be relevant to simultaneously tackle their priority effects and increase those of desired 

native species. Different strategies could also be successively used over time. For example, 

establishing a community dominated by one competitive species, producing a high rate of 

biomass, may be an effective way to rapidly increase native cover and counter immediate 

invasion risk, while subsequently adding seeds from diverse species may help stabilize the 

community in the long-term. 
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Supplementary material 

 

Figure S2.1 Revegetation strategies that could reinforce priority effects of native species and prevent 

invasive species colonization. Priority effects can be driven by resource preemption or the alteration 

of non-resource characteristics of the environment (e.g. releasing of allelochemicals, modification of 

herbivory, pathogens and mycorrhizae). Resource preemption could be enhanced by (A) giving natives 

a large time advance through establishing the community as soon as possible after disturbances, (B) 

establishing a dominant native species with particular trait values enabling to strongly and rapidly 

preempt limited resources (C) increasing species diversity, (D) increasing sowing density, and (E) 

establishing a dominant native species with specific trait values similar to one targeted invasive species 

(limiting similarity). To increase priority effects of native species, non-resource components could be 

manipulated by (F) manipulating non-resource components (e.g. inoculation or suppression of 

mycorrhizal fungi) or introducing native species inducing soil modifications in releasing allelochemicals 

or modifying soil biota.  
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Synthesis of Chapter 2 and transition to Chapter 3 

 

 

In Chapter 2, I underlined several ways to increase priority effects of native species 

reestablished after a disturbance. In Chapter 3, I report the results of a greenhouse 

experiment where I tested the influence of several interacting factors potentially influencing 

priority effects: (1) elapsed between recipient community sowing and invasive species 

introduction, (2) recipient community composition and (3) sowing density.  

  

Figure T.3 Chapter 3 in thesis organization. 

Chapter 2 in a nutshell 

Are priority effects a main mechanism involved in early invasion resistance? 

There is substantial evidence that priority effects strongly affects invasion resistance. 
Giving a time advance to native species can increase invasion resistance through an 
elevation of their fitness compared with later colonizing invasive species.  

Can priority effects be used after a disturbance, in a restoration context, to design 

plant communities resisting early invasion? 

While manipulating priority effects to reduce invasion has not been much investigated 
in the field, we pointed out encouraging results and proposed several promising ways 
to tackle priority effects of invasive species and enhance priority effects exerted by 
native species. Further research efforts are however required to test and refine 
priority effect-based strategies. 
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Chapter 3 

 

Abstract 

Questions: Giving a time advance to restored native plant species has recently been 

considered a promising way to improve their persistence and reduce invasion success (i.e.  

through priority effects). However, little is known about the influence of the elapsed time 

between seeding and invasion and its interaction with other characteristics such as species 

composition and density, despite the fact that it could substantially help developing effective 

management strategies. 

Methods: In a pot experiment, we simulated invasion by three major invasive species 

(Ambrosia artemisiifolia, Bothriochloa barbinodis, and Cortaderia selloana) in soil covered 

with recipient communities differing in species composition (one, three or nine species), 

density (700 or 2,778 seeds/m2), and time advance (established one or five months 

previously). We assessed early invasion success by measuring seedling emergence and 

survival over six months. 

Results: Early invasion success was mainly explained by recipient community's time advance 

and composition (or their interaction), while density had limited influence. Polycultures 

(three or nine species) showed generally greater invasion resistance, most likely due to high 

aboveground biomass essentially produced by two species. Species composition interacted 

with time advance in two ways: (1) Bothriochloa barbinodis seedling emergence was impacted 

by composition only in communities having five months of advance, suggesting that the 

contribution of species composition to invasion resistance varies according to the age of the 

community, and (2) Ambrosia artemisiifolia and Cortaderia selloana survival was affected by 

time advance in polycultures only, which produced much more biomass than monocultures, 

implying that a greater head start provides a competitive advantage only if it allows a 

sufficient increase in biomass production. 

Conclusions: Implementing revegetation as soon as site clearance work is over, as well as 

establishing productive native species may help reduce invasion success. How much of an 

advantage recipient community time advance represents depends on biomass production. 

Keywords: assembly, biomass, biotic resistance, coexistence, composition, density, historical 

contingencies, invasive species, multistate models, priority effects, restoration, revegetation 

 



 

54 

 

 

 



Chapter 3 – Experiment 1: Recipient Community Time Advance, Composition and Density 

55 

 

3.1 | Introduction 

The alarming rate of biodiversity loss worldwide has been attributed particularly to the 

constantly increasing spread of invasive species (Mollot et al. 2017; Seebens et al. 2017), 

highlighting the importance of designing effective and environment-friendly methods of 

invasive species control. The current expansion of anthropologically disturbed areas 

promotes plant invasions (Facon et al. 2006; Hobbs & Huenneke 1992), with disturbances like 

vegetation clearance increasing resource availability and decreasing competition from 

resident species (Davis et al. 2000). Active reestablishment of native plant cover after a 

disturbance is increasingly being advocated as a method of reducing invasive plant species 

colonization and spread locally (Byun & Lee 2017; Larson et al. 2013; Middleton et al. 2010). 

The idea is that re-established communities exhibit a certain resistance to invasions (biotic 

resistance; Levine et al. 2004), mainly through resource competition at the neighborhood 

scale (Goldstein & Suding 2014; Levine et al. 2004). It has also been suggested that it may be 

more effective to combat invasive species at the seedling stage, since: (1) the seedling stage 

is considered one of the most vulnerable stages in the life cycle of a plant (Kitajima & Fenner 

2000); and (2) initial seedling establishment largely determines subsequent population 

success (Albrecht & McCarthy 2009; Kitajima & Fenner 2000). 

Consequently, designing native plant communities capable of quickly acquiring robust 

invasion resistance is a fundamental step in limiting invasive species establishment. 

Recently, giving a time advance to the native species over invasives has been suggested as a 

way to improve native species persistence and limit invasive species colonization through 

priority effects (Delory, Weidlich, Kunz et al. 2019; Firn et al. 2010; Grman & Suding 2010; 

Hess, Mesléard, Buisson 2019; Vaughn & Young 2015; Wolf & Young 2016). Priority effects, by 

which early-arriving species affect the establishment, survival, growth or reproduction of 

later colonizers (Helsen et al. 2016), are considered to be mainly induced by resource 

preemption (Fukami 2015), but can also arise from alterations of biotic (e.g. soil 

microorganisms) and abiotic (e.g.  allelochemicals, nutrient dynamics) components of the 

environment (Corbin & D’Antonio 2012; Mangla & Callaway 2008). Prior establishment of 

native species has been shown to strongly decrease invasion success. For instance, Grman 

and Suding (2010) found a ten-fold reduction in invasive species biomass when native species 

were planted five weeks earlier. Delory, Weidlich, Kunz et al. (2019) showed that in the exotic 

species Senecio inaequidens biomass was 96% to 99% lower when arriving with a 21-day 

delay over native species. However, little attention has been paid to the influence of elapsed 

time between seeding and invasion in interaction with community characteristics (Helsen et 

al. 2016; Hess, Mesléard, Buisson 2019; Orloff et al. 2013; von Gillhaussen et al. 2014). 

 Timing of species arrival can have substantial effects on community assembly (Ejrnaes et al. 

2006; Harper 1961; Kardol et al. 2013; Körner et al. 2008; Ross & Harper 1972; Sagar & Harper 

1960). Longer time intervals between arrival events are expected to result in greater 

asymmetry in plant size and stronger priority effects (Kardol et al. 2013; Wilsey et al. 2015), 

because early-arriving species have time to use available resources more completely. 
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Therefore, extending the time advance of natives over invasives should lead to increased 

invasion resistance. Since plant species vary in size and biomass production, the benefit of 

increasing time advance could however depend on species composition. Also, increasing the 

density of resident individuals in a community (i.e. the number of individuals per surface 

unit) may also increase priority effects and reduce the recruitment of invasive species 

(Goldberg et al. 2001; Orloff et al. 2013; Yannelli et al. 2017, 2018), because establishing more 

individuals is expected to enhance resource acquisition, thereby reducing the resources 

available for invading species (Gerhardt & Collinge 2007). However, increasing sowing 

density may only be efficient in the very early stages because biomass production stabilizes 

over time (i.e. density-dependent effects; (Burton et al. 2006; Carter & Blair 2012; Crawley 

2007; Nemec et al. 2013; von Gillhaussen et al. 2014).  

Invasive species management strategies could be substantially improved by a better 

understanding of how early invasion resistance is influenced by the time advance given to 

native species and its interaction with species composition and individuals’ density, which 

are three parameters easy to manipulate. In a greenhouse experiment, we investigated how 

the elapsed time between seeding and invasion (hereafter ‘time advance’; one or five months) 

in interaction with species composition (one, three or nine species) and density of individuals 

(700 or 2,778 seeds/m2) influenced the early establishment success of three invasive species 

in Europe: Ambrosia artemisiifolia, Bothriochloa barbinodis and Cortaderia selloana. Early 

establishment success was monitored by recording seedling emergence and survival over six 

months. 

3.2 | Methods 

3.2.1 | Species selection 

While many studies assess the response of a single invader (Byun et al. 2013; Byun & Lee 2017; 

Dukes 2002; Firn et al. 2010), this does not allow for the detection of varying responses from 

invasive species (Emery 2007). Here, therefore, we monitored early establishment success of 

three species known to invade disturbed areas in Europe (Domenech & Vilà 2008; Fried 2010; 

Ozaslan et al. 2016) and disperse by seed (Allred 2003; Bassett & Crompton 1975; Fried 2010; 

Lambrinos 2002): common ragweed (Ambrosia artemisiifolia L.), cane bluestem (Bothriochloa 

barbinodis (Lag.) Herter) and pampas grass (Cortaderia selloana (Schult. & Schult.f.) Asch & 

Graebn.). 

The common ragweed (Ambrosia artemisiifolia L., Asteraceae) is an annual opportunistic 

weed introduced from North America more than a century ago (Heckel 1906). Thanks to its 

large ecological amplitude (Leskovsek et al. 2012; Onen et al. 2017) and high seed production 

(up to 18,650 seeds in France; Fumanal 2007), the common ragweed can successfully invade 

disturbed areas such as road sides, riverbanks, wastelands as well as cultivated fields (Lavoie 

et al. 2007; Simard & Benoit 2010). 

The cane bluestem (Bothriochloa barbinodis (Lag.) Herter, Poaceae) is a perennial warm-

season C4-grass growing in upright clumps 60–120 cm tall (De Wet 1968; Koshi et al. 1977) 
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native to the southern USA and Central and South America (Vega 2000). Only recently 

observed in Europe (1970s in southern France as Bothriochloa imperatoides (Hack.) Herter; 

Auriault 1976), it spreads fast along roadsides, railways and vineyards in large parts of France 

(Fried 2014; Verloove & Sánchez Gullón 2012) and could become a serious invader (Fried 

2010). 

The pampas grass (Cortaderia selloana (Schult. & Schult.f.) Asch. & Graebn., Poaceae) is a 

perennial C4-grass introduced from South America into Europe and widely used as an 

ornamental landscape plant that can be up to 4 m in height and 3.5 m in diameter (Bacchetta 

et al. 2010; Bossard et al. 2000; Domenech & Vilà 2008). The small, wind-dispersed seeds (i.e.   

106 seeds per mature plant; Domenech & Vilà 2008; Lambrinos 2002) are able to rapidly 

germinate under a wide range of ecological conditions (Domenech & Vilà 2007) and form 

dense monospecific stands (Bossard et al. 2000; Lambrinos 2002). 

For each invasive species, we collected seeds from at least ten individuals from three mature 

populations in southeastern France (Supplementary material, Table S3.1). Seeds from 

Ambrosia artemisiifolia were initially cold-stratified to break dormancy and optimize 

germination (Bazzaz 1970). Seeds were placed between two cotton layers soaked in distilled 

water in a hermetically sealed plastic box covered with light-tight aluminum and refrigerated 

at 4°C for six weeks (Bae et al. 2017). Under favorable conditions, Cortaderia selloana and 

Bothriochloa barbinodis are able to rapidly reach high germination rates without cold 

stratification (Abbott & Roundy 2003; Bacchetta et al. 2010; Costas-Lippmann 1979), and their 

seeds were therefore not cold-stratified. 

Before starting the experiment, we assessed the germination capacity of the three invasive 

species by placing 120 seeds in Petri dishes on cotton soaked in distilled water. The Petri 

dishes were placed in a growth chamber (Hotcold-GL: 12K lux; P-Selecta, Barcelona, Spain) 

and incubated at alternating temperatures (15/25°C) with a photoperiod of 12 hr/12 hr for 

one month. The highest temperate occurred within the 12-hr light period. Seedling 

emergence was monitored every three days until no seedling emergence was recorded. 

Seedlings were removed as they germinated. The results of these preliminary germination 

tests were used to adjust the number of seeds from each invader sown in the experiment, so 

as to ensure at least nine viable seeds in each pot (Supplementary material, Table S3.1). 

To compose our recipient native communities, we selected nine perennial plant species 

widely used to revegetate roadsides in France: Achillea millefolium L., Dactylis glomerata L., 

Lolium perenne L., Lotus corniculatus L., Onobrychis viciifolia Scop., Plantago lanceolata L., 

Poterium sanguisorba L., Schedonorus arundinaceus (Schreb.) Dumort., and Trifolium repens 

L.. Commercially available seeds were obtained from ZYGENE (Charols, France). Species 

nomenclature follows TAXREF v13.0 (Gargominy et al. 2019). 

3.2.2 | Study site and infrastructure 

This experiment was carried over one year (late September 2017 until late September 2018) 

at the Research Institute of Tour du Valat, France (43°30′N, 4°40′E, 1 m elevation). The 
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climate at the site is Mediterranean, characterized by warm to hot, dry summers and mild, 

wet winters, with high interannual variability (Lionello et al. 2006). Air temperature and 

precipitation data were measured continuously at a meteorological station located close to 

the experimental site (Figure S3.1Erreur ! Source du renvoi introuvable.). Plant communities 

were established in square plastic pots (with a width of 30.5 cm at the top and 25 cm at the 

bottom, 27 cm deep) containing from bottom to top: (1) a 27-cm diameter polyester textile 

filter (® Diatex textile (DIATEX, Saint Genis Laval, France) with 50–70 µm mesh size to 

prevent loss of substrate), (2) a polystyrene bloc (width 20 cm, 10 cm deep) allowing water to 

flow at the sides, (3) a substrate mixture consisting of 30 vol% vermiculite (® Projar; Projar 

Group, Valencia, Spain) 2.6 kg/m3), and 70 vol% commercial organic and fertile topsoil (® 

Geolia; Leroy Merlin, Nîmes, France; Figure S3.2). All pots were kept in a greenhouse with ® 

Diatex mesh walls and roof (600–500 µm mesh size) to ensure that climate conditions were 

similar to outside conditions and to prevent seed dispersal from the surrounding area. In 

addition to the ambient precipitation, all pots received equal amounts of demineralized 

water through sprinklers placed equidistantly. The amount of additional water was adjusted 

according to weather conditions so as to ensure conditions favorable to germination and 

plant development. 

3.2.3 | Experimental design 

The experiment was designed to simulate situations where seeds of invasive plant species 

(Ambrosia artemisiifolia, Bothriochloa barbinodis and Cortaderia selloana) reach soil covered 

with native plant species re-established on bare soil after a disturbance or restoration 

actions involving vegetation clearing. 

In each pot, we established recipient communities showing three different species 

compositions: one, three or nine species (hereafter called respectively ‘1-sp’, ‘3-sp’ and ‘9-

sp’ communities; Table 3.1). Lolium perenne was selected for the 1-sp treatment because it is 

usually the dominant species in commercial seed mixtures (Arienzo et al. 2004). The 3-sp 

treatment included Lolium perenne, Plantago lanceolata and Trifolium repens. The 9-sp 

treatment included all the species cited above (Table 3.1). Hereafter, ‘monocultures’ refers to 

1-sp communities, and ‘polycultures’ refers to 3-sp and 9-sp communities. We tested two 

levels of species density, sowing either 700 or 2,778 recipient community seeds/m² (63 or 

235 seeds/pot, hereafter called respectively ‘LowD’ and ‘HighD’ communities; Table 3.1, 

Figure 3.1). Recipient community seeds were sown either 175 or 29 days (hereafter called 

respectively ‘5-month’ and ‘1-month’ communities) before invasive species seeds.  
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Sowing densities were chosen in line with the densities commonly applied in roadside 
revegetation. Native species seeds were allocated to fixed positions, either 3.5 cm (LowD) or 
1.5 cm (HighD) apart and chosen so as to ensure that all invasive species individuals were 
surrounded by the same native species neighbors (Figures 3.2, 3.3). 

    Density 
(no. seeds/pot) 

Functional 
group 

 
Species 

 LowD  HighD 

  1-sp 3-sp 9-sp  1-sp 3-sp 9-sp 

Grasses 

 Lolium perenne  63 22 9  250 82 30 
 Dactylis glomerata  - - 4  - - 20 
 Schedonorus arundinaceus   - - 6  - - 30 

Leguminous 
forbs 

 Trifolium repens  - 20 6  - 84 30 
 Lotus corniculatus  - - 6  - - 25 
 Onobrychis viciifolia  - - 9  - - 30 

Non-
leguminous 

forbs 

 Plantago lanceolata  
- 21 8 

 
- 84 30 

  Poterium sanguisorba  - - 9  - - 30 
 Achillea millefolium  - - 6  - - 25 

Table 3.1 Species composition and density applied per species of recipient communities differing 

in density (LowD = low density, HighD = high density) and species composition (1-sp = 1 species, 3-

sp = 3 species, 9-sp = 9 species). 

Figure 3.1 Recipient communities at the time of invasive species 

introduction (left: 1-month and right: 5-month communities). 
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Before the invasive species were introduced, any ungerminated native species seeds were 

replaced, to ensure the intended density of seedlings. On March 22, 2018, seeds from one 

invasive species were sown in each pot at nine fixed positions 8 cm apart. In order to reduce 

the bias related to the intrinsic germination capacity of the harvested invasive species seeds, 

we adjusted the number of seeds introduced at each position from two to five 

(Supplementary material, Table S3.1) based on the preliminary germination tests described 

above (Supplementary material, Table S3.1). If several seedlings emerged from the same 

position, only the seedling at the most advanced development stage was kept. Seedling 

emergence rate was therefore considered to be 100% when at least one individual emerged 

at each position. 

For each invasive species, there were four replicates of each recipient community type (i.e.   

each combination of recipient species time advance × composition × density) and four 

control pots with bare soil, totaling 156 pots. Pot distribution followed a randomized design 

and was randomized six times during the experiment to take account of microclimate 

effects. 

  

A B C 

Figure 3.2 Pot spatial arrangement of (A) Low density recipient communities (63 seeds/pot), (B) 

High density recipient communities (235 seeds/pot) and (C) invasive species seeds. 

Figure 3.3 Seed sowing was realized using cardboard with holes (each hole corresponding to a 

seed) as to ensure a fixed spatial arrangement of the recipient communities. 
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3.2.4 | Data collection 

The aim of this experiment was to understand the ways by which characteristics of the 

recipient communities (i.e. time advance, species composition and density) influenced early 

invasion success. Hence, in addition to monitoring early establishment success of the 

invasive species, we collected data on the recipient communities’ characteristics susceptible 

to mediate early invasion resistance i.e. biomass production, vegetation cover, and soil 

nutrient content. We did not seek to evaluate the impact of invasive species on recipient 

communities. 

Early establishment success of invasive species was assessed by monitoring seedling 

emergence and survival of each invasive plant individual each week for the first six weeks 

and then every two weeks until the end of the experiment. Seedlings were considered to 

have emerged when any part was visible. We considered the invasion resistance of the 

recipient community to have increased when there was a reduction in probability of invasive 

species establishment (seedling emergence or survival). The aboveground biomass of each 

native species of the recipient community was measured either: (1) once all invasive 

individuals had died within a pot, even before the end of the experiment; or (2) at the end of 

the experiment, even if individual invasives remained alive. For each pot, aboveground 

biomass was collected 1 cm above ground level, sorted by species and dried at 80°C for 48 hr 

until weighed. Total below-ground biomass (native and invasive species roots) was measured 

at the end of the experiment for six randomly selected pots per recipient community type. 

For this purpose, one eighth of the pot soil volume was randomly withdrawn. Roots were 

isolated, washed and sieved with a 250-µm mesh, dried for 48 hr at 80°C and weighed. We 

then estimated dry root weight per pot by multiplying the dried sample weight by 8. 

To estimate vegetation cover at the time of invasive species seed introduction, digital images 

of the pots were acquired for computed image analysis via a Nikon D80 (Nikon Corporation, 

Tokyo, Japan) digital camera with a 10.2 megapixel CDD sensor. The camera was mounted 

on a 1.4-m high fixed camera stand with the lens facing exactly perpendicular to the ground, 

where the pots were placed successively. 

Soil resource availability influences competition intensity (Craine & Dybzinski 2013), as well 

as the importance of priority effects (Kardol et al. 2013). We therefore analyzed organic 

carbon, nitrogen, nitrates, ammonium and available phosphorus on soil samples collected 

from each pot at the time of invasive species seed introduction. For this purpose, 72 soil 

cores of 10 mm diameter × 100 mm deep were collected for each recipient community type 

(six per pot), pooled and air-dried for 48 hr at 40°C and sieved (<2 mm) to remove roots and 

rocks. Samples were analyzed for: (1) organic carbon by sulfochromic oxidation (NF ISO 

14234, 1998); (2) total nitrogen by the modified Kjeldhal method (NF ISO 11261, 1995); (3) nitrate 

NO3
- and ammonium NH4

+ (NF ISO 14256-2, 2007); and (4) available phosphorus P2O5 by the 

Dyer method (NF X31-160, 1999). All soil parameters were determined according to the 

standard French method AFNOR (Afnor 1994) or standard international method ISO. Analyses 
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were conducted by an accredited soil analysis laboratory following standard protocols 

(Teyssier 2020). 

3.2.5 | Data analyses 

Modelling invasive species seedling emergence and survival 

We used a multistate capture–recapture modeling framework (Lebreton & Cefe 2002) to 

estimate the seedling emergence and daily plant survival probabilities of introduced invasive 

individuals. In this study, multistate capture–recapture modeling was preferable to simple 

logistic regressions, as it allowed the different transition probabilities (seedling emergence, 

plant survival) to be integrated within a common framework. Capture (introduction of 

invasive species seeds) and recapture (subsequent visits) events were defined according to 

the experimental monitoring protocol. Monitoring intervals were specified in days to take 

into account unequal time intervals. We considered each individual as being in one of three 

states: seed (S), plant (P) and dead (D). Seed state means that no part of the emerged seedling 

was visible. Plant state means that any part of the seedling was visible and alive. Plants were 

considered dead when no green tissue remained. We examined the additive effects of time 

advance (time), species composition (comp) and density (den) and their interactions on the 

probability of seedling emergence (transition from seed to plant) and daily plant survival 

(transition from plant to dead state) of the three invasive species (Supplementary material 

S3.I). Our controlled conditions eliminated the possibility of individuals being missed during 

monitoring, so detection probability should be 100%. Therefore, our models can be 

considered as ‘known-fate’ models, with no goodness-of-fit tests required (Cooch & White 

2019). 

Model selection and parameter estimation were performed for each invasive species using 

the program E-SURGE (which stands for multiEvent SURvival Generalized Estimation; 

Choquet et al. 2009). E-SURGE is a program for fitting multistate/multi-event models to 

capture–recapture (CR) data. Multistate models are survival models that can integrate state-

dependent survival and transition probabilities among states. A state may be described as a 

categorical individual covariate that can change over time (e.g.  seed and plant states).  

Transitions may have a different meaning depending on the state definition (in our case 

probability of seedling emergence and survival). Our initial model was built to cover all the 

effects we intended to test: 

𝜓𝑡𝑖𝑚𝑒×𝑐𝑜𝑚𝑝×𝑑𝑒𝑛 , 𝜑𝑡𝑖𝑚𝑒×𝑐𝑜𝑚𝑝×𝑑𝑒𝑛 

and modeled the probabilities of seedling emergence (ψ) and survival (φ). It incorporated the 

effects of time advance, species composition and density of the recipient community. 

We followed a step-down approach proposed by Lebreton et al. (2009) for model selection, 

focusing first on seedling emergence probabilities and then on survival probabilities. The 

model selection was based on the Akaike information criterion corrected for overdispersion 

and small sample size (QAICc). We examined the effect of density, species composition and 
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time advance by comparing QAICc scores, removing one effect at a time. We estimated a 

95% confidence interval (CI) for each parameter. Survival probabilities were daily estimates. 

A generic model description and the steps in the model selection procedure are provided in 

Supplementary material S3.I and S3.II. 

Total aboveground and belowground biomass of recipient communities 

We analyzed differences in final total aboveground and below- ground biomass depending 

on recipient community type using Kruskal–Wallis rank sum tests. When the type of 

community had a significant impact on biomass, a post-hoc Dunn's test was performed 

(‘dunn.test’ package; Dinno 2015). Analyses were performed via the R ver. 3.4.3 statistical 

platform (R Core Team, R Foundation for Statistical Computing, Vienna, Austria). P-values 

lower than 0.05 were considered as statistically significant. 

Recipient vegetation cover 

We applied the image analysis method described by Stewart et al. (2007) to estimate 

percentage of vegetation cover in the pots, using consecutively Adobe 'Photoshop' software 

ver. 2015.0.1 (Adobe Systems, San Jose, CA, USA) and GIMP ver. 2.10.8 (GNU Image 

Manipulation Program, Groton, MA, USA) image processing software. Photoshop was used 

to select color and create the two masks separating vegetation (colored black) from ground 

(colored white). GIMP was then used to count the number of black and white pixels. The 

percentage of vegetation cover was obtained by dividing the number of black (vegetation) 

pixels by the total number of pixels in the image. We analyzed differences in vegetation cover 

depending on recipient community type using Kruskal–Wallis rank sum tests. When the type 

of community had a significant impact on vegetation cover, a post-hoc Dunn's test was 

performed (‘dunn.test’ package; Dinno 2015). Analyses were performed via the R ver. 3.4.3 

statistical platform. P-values lower than 0.05 were considered as statistically significant.  

Soil analyses 

We analyzed differences both in total organic matter, carbon and nitrogen content, and in 

nitrate, ammonium and phosphorus content: (1) between soil containing 5-month and 1-

month communities; and (2) between soil containing LowD and HighD communities, using a 

Wilcoxon–Mann–Whitney test. We also analyzed differences between soil with 1-sp, 3-sp 

and 9-sp communities, using a Kruskal–Wallis rank sum test. Analyses were performed via 

the R ver. 3.4.3 statistical platform. P-values lower than 0.05 were considered as statistically 

significant. 

3.3 | Results 

3.3.1 | Invasive species seedling emergence 

The probability of seedling emergence (hereafter ‘seedling emergence’) was best explained 

by: (1) time advance for A. artemisiifolia and C. selloana; and (2) the interaction between 
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species composition and time advance for B. barbinodis (Supplementary material S3.II). 

Ambrosia artemisiifolia and C. selloana showed lower seedling emergence in 5-month 

communities than in 1-month communities (Figure 3.4A,C). While A. artemisiifolia seedling 

emergence was higher in the control than in communities (Figure 3.4A), C. selloana seedling 

emergence tended to be similar or lower in the control than in communities (Figure 3.4C). 

Seedling emergence of B. barbinodis was similar in control, 1-month communities and 5-

month monocultures, and was lower in 5-month polycultures (Figure 3.4B). 

 

Figure 3.4 Probability of seedling emergence (model estimates; percentage ±95% CI) of the invasive 

species: (A) Ambrosia artemisiifolia (ntot = 432); (B) Bothriochloa barbinodis (ntot = 432); and (C) Cortaderia 

selloana (ntot = 432), depending on recipient community on recipient community type: time advance 

over invasive species (one month or five months), species composition (1-sp = one species, 3-sp = three 

species, 9-sp = nine species), and density (LowD = low density, HighD = high density). Control refers to 

bare soil. 

3.3.2 | Invasive species survival 

The daily probability of survival (hereafter ‘survival’) was best explained by: (1) the interaction 

between density, species composition and time advance for A. artemisiifolia; (2) species 

composition for B. barbinodis; and (3) the interaction between species composition and time 

advance for C. selloana (Supplementary material S3.II). Survival was not (A. artemisiifolia and 

C. selloana; Figure 3.5A,C) or only slightly (B. barbinodis; Figure 3.5B) lower in monocultures 

than in control. All species survival was lower in polycultures than in control and 

monocultures (Figure 3.5). Survival of A. artemisiifolia and C. selloana was lower in 5-month 

polycultures than in 1-month polycultures and control (Figure 3.5A,C). A. artemisiifolia also 

showed lower survival in HighD than in LowD 1-month polycultures.  

 

A B C 
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Figure 3.5 Daily probability of survival (model estimates; percentage ±95% CI) of the invasive species: 

(A) Ambrosia artemisiifolia (ntot = 389); (B) Bothriochloa barbinodis (ntot = 336) and (C) Cortaderia selloana 

(ntot = 368) depending on recipient community type: time advance over invasive species (one month or 

five months), species composition (1-sp = one species, 3-sp = three species, 9-sp = nine species), and 

density (LowD = low density, HighD = high density). Control refers to bare soil. 

3.3.3 | Total aboveground and belowground biomass of recipient communities 

Recipient community type significantly impacted the final total above-ground biomass of 

the recipient community (Kruskal–Wallis ꭓ2=7.6, df=11, p<0.001). Final total aboveground 

biomass was significantly lower in monocultures than in polycultures (post-hoc Dunn's test, 

p<0.01; Figure 3.6), regardless of time advance and density. We found no significant 

difference between 3-sp and 9-sp communities (post-hoc Dunn's test, p>0.05; Figure 3.6). 

Trifolium repens largely dominated 3-sp communities, representing on average 76.4±8.2% of 

the total biomass, while L. perenne and P. lanceolata only represented 9.1±5.3 and 2.8±1.1% 

(Figure 3.6). Lotus corniculatus dominated 9-sp communities, representing on average 

61.3±10.5% of the total biomass, followed by T. repens (16.7±6.6%) and D. glomerata (5.9±2.0%; 

Figure 3.6). The cumulative aboveground biomass of other species represented less than 5% 

of total aboveground biomass. No clear pattern was detected for final total belowground 

biomass (Supplementary material, Figure S3.3).  

A B C 
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Figure 3.6 Final aboveground biomass of the community (mean±SE, n=12) 

classed by species, depending on recipient community type: time advance over 

invasive species (1 month or five months), species composition (1-sp = one 

species, 3-sp = three species, 9-sp = nine species), and density (LowD = low 

density, HighD = high density). Values below 0.1g are not represented, therefore 

Achillea millefolium, Onobrychis viciifolia, and Poterium sanguisorba are not 

shown. Letters (a,b) distinguish total biomass means that are significantly 

different according to a post-hoc Dunn's test (α=0.05). 
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3.3.4 | Recipient vegetation cover 

Recipient community type significantly impacted vegetation cover percentage at the time of 

invasive species introduction (Kruskal-Wallis ꭓ²=127.07, df=11, p<0.001). We found no 

statistical difference between 5-month communities, whatever the density or species 

composition (post-hoc Dunn’s test, p>0.05; Supplementary material, Figure S3.4). 5-month 

communities had significantly higher vegetation cover than 1-month communities (81.7±5.9% 

and 3.9±2.6 respectively, post-hoc Dunn’s test, p<0.05; Supplementary material, Figure S3.4). 

In 1-month communities, increasing density significantly increased vegetation cover for 

each species composition (post-hoc Dunn’s test, p<0.05). Species composition did not 

impacted vegetation cover in 1-month communities so that no statistical difference was 

found between 1-month LowD communities (p>0.05), nor between 1-month HighD 

communities (p>0.05; Supplementary material, Figure S3.4).  

3.3.5 | Soil analyses 

Control soil was fertile (total nitrogen =3.54 g/kg, nitrate NO3
- =0.092 g/kg, ammonium NH4

+ 

=0.0446 g/kg, available phosphorus P2O5 =0.273 g/kg) and had a high total organic matter 

content (5.1%; Supplementary material, Table S3.2). Total nitrogen, NO3
-, NH4

+ and P2O5 

contents were higher in control soil than in soil supporting recipient communities 

(Supplementary material, Table S3.2). We found no statistical difference in any measured soil 

parameter between soil supporting (1) LowD and HighD communities, nor (2) 1-sp, 3-sp and 

9-sp communities (p>0.05; Supplementary material, Table S3.2). Soil supporting 5-month 

communities showed no difference in similar contents of total organic matter, carbon and 

nitrogen contents (p>0.05), and lower NO3
- (p=0.005), NH4

+ (p=0.005) and P2O5 (p=0.002) 

contents than soil supporting 1-month communities (Supplementary material, Table S3.2). 

3.4 | Discussion 

Overall in this experiment, establishing a recipient community negatively impacted invasive 

species early establishment success (Figures 3.3, 3.4; Supplementary material, Figures S3.5, 

S3.6), supporting revegetation as a relevant tool to limit invasions (Byun & Lee 2017; Larson 

et al. 2013; Middleton et al. 2010). Responses varied depending on the characteristics of the 

recipient communities and on the invasive species. 

3.4.1 | Time advance mainly determined invasive species seedling emergence 

On its own, the time advance given to the recipient community mainly explained variations 

in seedling emergence of A. artemisiifolia and C. selloana, which tended to decrease with 

increasing time advance (Figure 3.4A,C). Germination is regulated by environmental 

components, mainly temperature, light, water (Koller & Kozlowski 1972), and soil nitrate 

concentration (Pons 1989). Seeds can detect the presence of neighboring plants early on, in 

particular by perceiving (1) spectral changes in the light environment resulting from the 

presence of a canopy (Batlla et al. 2000), or (2) low nitrate availability resulting from nitrate 

preemption by plants (Pons 1989). Thus, the decrease in seedling emergence observed with 
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increasing recipient community time advance (Figure 3.4A,C) may be related to both 

phenomena, since (1) vegetation percentage cover was much higher in 5-month than in 1-

month communities (Supplementary material, Figure S3.4), and (2) significantly lower soil 

nitrate content was found for 5-month than for 1-month communities at the time invasive 

species were introduced (Supplementary material, Table S3.2). 

 Responses differed between invasive species. While seedling emergence of A. artemisiifolia 

tended to be the lowest in both 5-month and 1-month recipient communities, C. selloana 

showed the highest seedling emergence in 1-month communities (Figure 3.4A,C). This 

suggests that the communities established for 1 month facilitated C. selloana seedling 

emergence through the creation of better conditions than bare soil, probably by retaining 

humidity and generating adequate shade conditions (Domenech 2005; Holmgren et al. 1997). 

The interaction between time advance and species composition of the recipient community 

best explained variations in seedling emergence of B. barbinodis (Figure 3.4B). Species 

composition impacted seedling emergence in 5-month communities, where seedling 

emergence was lower in polycultures; however, it had no impact in 1-month communities. It 

seems unlikely that the effect of species composition in 5-month polycultures is driven by 

variations in vegetation cover or soil parameters, which were similar to monocultures at the 

time of invasive species introduction (Supplementary material, Figure S3.4, Table S3.2). We 

therefore hypothesize that a higher overlap between resident species foliage occurred in 5-

month polycultures (likely more productive than monocultures; Figure 3.6), generating 

variations in the light environment that impacted B. barbinodis germination (Benech-Arnold 

et al. 2000). Also, we suggest that the absence of impact of species composition in 1-month 

communities may be due to the similarities in cover, nutrient contents, and biomass 

production between the different communities at this very early growth stage. These results 

imply that the species composition contribution to invasion resistance may vary depending 

on the stage of community growth, and on the invasive species. 

3.4.2 | Time advance interacted with species composition to determine invasive 

species survival, density had a limited impact 

Invasive species survival was strongly affected by the species composition of the recipient 

community. Species composition alone determined B. barbinodis survival, but also strongly 

influenced, in interaction with other community characteristics, A. artemisiifolia and C. 

selloana survival. An identical response pattern was observed for the three invasive species: 

3-sp and 9-sp communities reduced the invasives’ survival to the same extent: the survival 

rate was lower than in monocultures, where it remained comparable to bare soil (Figure 3.5). 

This pattern appeared strongly correlated to total aboveground biomass production of the 

recipient communities: biomass production was 3 to 4 times lower in monocultures than in 

polycultures. Another factor, however, is that 3-sp and 9-sp communities were dominated 

by two different species (T. repens and L. corniculatus respectively; Figure 3.6). Therefore, 

we found that the total biomass produced explained the enhanced invasion resistance in 

polycultures rather than the number of species (i.e. high species richness is often associated 
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with increased resistance to invasion at small scales; (Byun et al. 2013; Dukes 2002; Fargione 

& Tilman 2005; Kennedy et al. 2002; Levine & D’Antonio 1999), or the identity of the dominant 

species.  

The prevalent role of biomass was also highlighted by A. artemisiifolia and C. selloana survival 

patterns. A. artemisiifolia and C. selloana survival was influenced by the interaction between 

time advance and species composition (Figure 3.5A,C). In polycultures, survival was lower in 

5-month than 1-month communities, supporting the assumption that a greater time advance 

increases competitive abilities compared to later-arriving invasive species (Wilsey et al. 2015) 

and enhances invasion resistance (Orloff et al. 2013; von Gillhaussen et al. 2014; Young et al. 

2016). However, time advance did not impact as much monocultures’ invasion resistance, 

most likely due to too low biomass production (Figure 3.6). These results suggest that it is 

not the time advance per se, but rather the amount of biomass produced (and thus the 

amount of limiting resource preempted) that determines the size of the competitive 

advantage given to the previously-established species, and in this case, invasion resistance. 

Overall, these findings (i.e. biomass prevailing over species composition or time advance) are 

consistent with previous studies showing that stand biomass is a major determinant of 

invasibility (Lulow 2006; Mason et al. 2017; Rinella et al. 2007).  

In most cases, density did not impact early establishment success of the invasive species 

(Figures 3.4, 3.5). Density only appeared to strongly impact A. artemisiifolia survival in 1-

month communities, where higher density tended to decrease the survival rate in 

polycultures (Figure 3.5A). The higher number of individuals may have led, in very early 

stages of community growth, to greater resource preemption, thereby hindering A. 

artemisiifolia survival. The absence of impact from density (1) in 5-month communities may 

have been caused by biomass stabilization over time (Figure 3.6; von Gillhaussen et al. 2014), 

and (2) in 1-month monocultures may be due to insufficient aboveground biomass 

production (Figure 3.6). It is possible that biomass stabilized over time, with both LowD and 

HighD communities reaching the biomass threshold value (i.e. the carrying capacity) of the 

habitat. In this case, a further increase in biomass can only be achieved if mortality causes 

reductions in density and frees up space for survivors (i.e. self-thinning; Crawley 2007; Stoll 

et al. 2002). Since only one invasive species was impacted by community density, our results 

provide little support for the hypothesis that increasing density lowers early establishment 

success of invasive species at the early stage of community growth. However, this should be 

tested in field conditions, were carrying capacity may be less restrictive.  

It appears from our results that extending the time advance of native species on invasive 

species seed arrival can reinforce priority effects, therefore reducing invasion success on 

soil cleared of vegetation. How much of an advantage this time advance represents will, 

however, depend on biomass production. The positive effect could be maximized by clearing 

soil of invasive species propagules and vegetative parts before rapidly sowing native plant 

communities, and by carefully controlling invaders during the first few weeks. Eliminating 

rhizomes fragments may be particularly critical since rhizome emergence is less sensitive to 
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the presence of neighbors than seedling emergence (Kettenring et al. 2015), and rhizomes 

are likely to have greater overall establishment success than seeds because they are better 

provisioned (Silvertown 2008; Winkler & Fischer 2002). 

The benefits from giving a time advance to certain species can remain visible for years 

(Young et al. 2016), so this strategy may also pay off in the long-term. In our short-term 

experiment, the contribution of only a few species to invasion resistance in polycultures 

implies that establishing a few productive species may be an efficient strategy to repel 

invasive species colonization at the early stages of community growth. On the other hand, 

long-term studies suggest that implementing diverse communities may ensure ecosystems 

against declines in productivity (Lawton & Brown 1994; Yachi & Loreau 1999) and reduce 

biomass and resource-use fluctuations over time (Cottingham et al. 2001; Hooper et al. 

2005), potentially leading to greater resistance in the long-term (Dunstan & Johnson 2007). 

Further research will be needed to determine whether combinations of different seeding 

strategies (i.e. early sowing of a few productive species, followed by late sowing of species 

mixtures) can help to reinforce invasion resistance in both short and longer terms. 
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Supplementary material 

 

Table S3.1 Results of preliminary invasive species germination tests realized before the experiment 

and used to define the number of introduced seeds for the three harvested populations (GPS 

coordinates indicated) of each of the three tested invasive species. Based on the results of preliminary 

germination rates (‘Germination rate’), we determined the theoretical number of seeds required to 

achieve one emerged individual (‘Theoretical No. of seeds’). The final number of seeds introduced 

(‘Applied No. of seeds’) was then calculated by rounding the theoretical number of introduced seeds 

up to the next whole number (i.e. in order to theoretically achieve at least one emerged individual). 

This adjustment aimed at reducing the bias linked with the intrinsic germination capacity of the 

harvested invasive species seeds in the experiment. 

 
 

Figure S3.1 Temperature (daily mean in °C) and rainfall (daily sum in mm) recorded during the 

experiment (Meteo France station number 133004003, Tour du Valat domain, France). 

 

Species 
Population location  
(GPS coordinates) 

Germination 
rate (%) 

Theoretical 
No. of seeds 

Applied No. 
of seeds 

A. artemisiifolia 

Pop. 1 : 44°0'44.3" N, 4°52'13.8" E 67.5 1.48 2 

Pop. 2 : 43°54'27.2" N, 4°52'13.8" E 23.9 4.18 5 

Pop. 3 : 43°51'57.1" N, 4°35'46.8" E 67.5 1.48 2 

B. barbinodis 

Pop. 1 : 43°33'23.1" N, 4°19'16.1" E 89.7 1.11 2 

Pop. 2 : 43°40'7.9" N, 3°58'31.9" E 25.8 3.88 4 

Pop. 3 : 43°39'39.9" N, 4°38'28.6" E 69.4 1.44 2 

C. selloana 

Pop. 1 : 43°41'47.1" N, 4°38'41.1" E 38.6 2.59 3 

Pop. 2 : 43°23'22.9" N, 4°34'28.1" E 46.0 2.17 3 

Pop. 3 : 43°23'50.3" N, 5°7'54.6" E 64.2 1.56 2 
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Figure S3.2 Experimental design: pot filling. 
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Supplementary material S3.I Description of Capture-Marking-Recapture modeling 

 

Matrices 

The model considered thtrr states, the seed state (S), the plant state (P), and the dead state 

(D) to estimate two transition probabilities: seedling emergence (ψ) and daily survival (φ): 

 

 

 

 

 

Initial State: At the initial state, all individuals are in the seed state 

𝑆 𝑃 

(∗ −) 

With ‘*’ indicating the complementarity parameter (only one ‘*’ by row) and ‘−‘ indicating 

parameters constrained to zero 

 

Transition 1: Estimation of seedling emergence (ψ) 

𝑆 𝑃 𝐷 

𝑆
𝑃
𝐷

(
∗ 𝜓 −
− ∗ −
− − ∗

) 

Transition 2: Estimation of daily survival (φ) 

𝑆 𝑃 𝐷 

𝑆
𝑃
𝐷

(
∗ − −
− 𝜑 ∗
− − ∗

) 

 

Recapture: Detection probability 

Detection probability (p) was equal to 1 so the non-observed rate (NO) was equal to 0. 

𝑁𝑂 𝑆 𝑃 

𝑆
𝑃
𝐷

(
∗ 𝑝 −
∗ − 𝑝
∗ − −

) 

Seed Plant Dead plant Ψ 1-Φ 

Φ 

1-Ψ 

Individual life history in the context of the study protocol 
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Supplementary material S3.II Model selection for invasive species seedling emergence and 
survival 

 

Ambrosia artemisiifolia 

 

Model selection for seedling emergence probabilities with survival probabilities [φtime×comp×den] for 

A. artemisiifolia. Models are ranked by decreasing value of QAICc, with the best model in bold. Number 

of estimable parameters (NP) and model deviance are also given. 

Model Seedling emergence NP Deviance QAICc 

7 ψtime 16 2765.85 2797.94 
3 ψden×time 18 2764.46 2800.58 

4 ψcomp×time 20 2761.51 2801.66 

1 ψden×comp×time 26 2751.82 2804.06 

5 ψden 16 2794.73 2826.62 

6 ψcomp 19 2790.90 2829.03 

2 ψden×comp 20 2789.63 2829.77 

8 ψ. 14 2807.59 2835.66 

 

 

Model selection for daily plant survival probabilities with best model for emergence probabilities 

[ψtime] for A. artemisiifolia. Models are ranked by decreasing value of QAICc, with the best model in 

bold. Number of estimable parameters (NP) and model deviance are also given. 

Model Survival NP Deviance QAICc 

7 φden×comp×time 16 2765.85 2797.94 
11 φcomp×time 10 2781.09 2801.12 

9 φden×comp 10 2802.37 2822.41 

13 φcomp 7 2812.60 2826.62 

10 φden×comp 8 3018.89 3034.91 

14 φtime 6 3028.34 3040.36 

12 φden 6 3038.61 3050.62 

15 φ. 4 3086.95 3094.97 

 



Chapter 3 – Experiment 1: Recipient Community Time Advance, Composition and Density 

75 

 

Bothriochloa barbinodis 

 

Model selection for seedling emergence probabilities with survival probabilities [φtime×comp×den] for 

B. barbinodis. Models are ranked by decreasing value of QAICc, with the best model in bold. Number 

of estimable parameters (NP) and model deviance are also given. 

Model Seedling emergence NP Deviance QAICc 

4 Ψcomp×time 20 3052.50 3092.64 
1 ψden×comp×time 26 3043.41 3095.64 

7 ψtime 16 3106.91 3138.10 

3 ψden×time 18 3105.29 3141.40 

6 ψcomp 17 3141.23 3175.33 

2 ψden×comp 20 3137.28 3177.42 

5 ψden 16 3166.56 3198.65 

8 ψ. 14 3172.94 3201.01 

 

 

Model selection for daily plant survival probabilities with best model for emergence probabilities 

[ψtime×comp] for B. barbinodis. Models are ranked by decreasing value of QAICc, with the best model 

in bold. Number of estimable parameters (NP) and model deviance are also given. 

Model Survival NP Deviance QAICc 

9 φden×comp 14 3064.23 3092.30 
4 φden×comp×time 20 3052.50 3092.64 

13 φcomp 11 3070.70 3092.75 

11 φcomp×time 14 3065.32 3093.39 

14 φtime 10 3282.99 3303.02 

10 φden×time 12 3281.66 3305.71 

12 φden 10 3287.51 3307.54 

15 φ. 14 3337.65 3353.68 
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Cortaderia selloana 

 

Model selection for seedling emergence probabilities with survival probabilities [φtime×comp×den] for 

C. selloana. Models are ranked by decreasing value of QAICc, with the best model in bold. Number of 

estimable parameters (NP) and model deviance are also given. 

Model Seedling emergence NP Deviance QAICc 

7 ψtime 16 3504.46 3536.56 
3 ψden×time 18 3503.29 3539.42 

4 ψcomp×time 20 3499.37 3539.52 

8 ψ. 14 3516.59 3544.67 

6 ψcomp 17 3512.23 3546.34 

5 ψden 16 3514.37 3546.47 

1 ψden×comp×time 26 3495.14 3547.40 

2 ψden×comp 20 3510.29 3550.45 

 

 

Model selection for daily plant survival probabilities with best model for emergence probabilities 

[ψtime] for C. selloana. Models are ranked by decreasing value of QAICc, with the best model in bold. 

Number of estimable parameters (NP) and model deviance are also given. 

Model Survival NP Deviance QAICc 

11 φcomp×time 10 3510.30 3530.34 
7 φden×comp×time 16 3504.46 3536.56 

13 φcomp 7 3539.91 3553.93 

9 φden×comp 10 3534.68 3554.72 

14 φtime 6 3652.54 3664.55 

10 φden×time 8 3650.52 3666.55 

12 φden 6 3668.1691 3680.19 

15 φ. 4 3680.52 3688.52 
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Figure S3.3 Final total belowground biomass (mean±SE, n=6) depending on 

recipient community type: time advance over invasive species (1- or 5-month), 

species composition (1-sp = 1 species, 3-sp = 3 species, 9-sp = 9 species) and 

density (LowD = low density or HighD = high density). Community type 

significantly impacted final total belowground biomass (Kruskal-Wallis 

ꭓ²=20.61, df=11, p=0.038). Increasing density significantly increased 

belowground biomass only for the 5-month monocultures (post-hoc Dunn’s 

test, p=0.035). Increasing time advance significantly (1) increased belowground 

biomass for the 3-sp HighD and 9-sp LowD communities (post-hoc Dunn’s test, 

p=0.031 and p=0.042, respectively) and (2) decreased belowground biomass for 

the LowD monocultures (post-hoc Dunn’s test, p=0.048). Finally, species 

composition significantly impacted belowground biomass as following: (1) in 

LowD 5-month communities, monocultures showed significantly lower 

belowground biomass than polycultures (post-hoc Dunn’s test, p=0.048 and 

p=0.001 for 3-sp and 9-sp, respectively), and (2) in HighD 1-month communities, 

3-sp communities showed significantly lower belowground biomass than 9-sp 

communities (p=0.036). Letters (a,b,c,d,e) distinguish values that are 

significantly different according to a post-hoc Dunn’s test (α=0.05). 
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Figure S3.4 Vegetation cover of the recipient communities at the time of 

invasive species introduction (%mean±SE, n=12) depending on recipient 

community type: time advance over invasive species (1- or 5-month), species 

composition (1-sp = 1 species, 3-sp = 3 species, 9-sp = 9 species), and density 

(LowD = low density or HighD = high density). Letters (a,b,c,d,e) distinguish 

vegetation cover percentage means that are significantly different according to 

a post-hoc Dunn’s test (α=0.05). 
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Total 

organic 
matter (%) 

C 
(g/kg) 

N 
(g/kg) 

NO3- 
(g/kg) 

NH4+ 
(g/kg) 

P2O5 
(g/kg) 

Control (bare soil) 5.1 29.5 3.54 0.092 0.0446 0.273 

1-month 

1-sp 
LowD 5.1 29.6 2.39 0.042 0.0044 0.209 

HighD 5.0 29.1 2.72 0.032 0.0037 0.219 

3-sp 
LowD 5.1 29.5 2.54 0.031 0.0042 0.211 

HighD 5.1 29.6 2.56 0.048 0.0049 0.222 

9-sp 
LowD 5.0 28.9 2.39 0.028 0.0036 0.207 

HighD 5.0 28.7 2.33 0.063 0.0039 0.214 

5-month 

1-sp 
LowD 5.0 29.0 2.64 0.010 0.0013 0.141 

HighD 5.2 29.9 2.49 0.005 0.0007 0.165 

3-sp 
LowD 5.2 29.6 2.35 0.008 0.0011 0.176 

HighD 5.2 30.0 2.41 0.014 0.0013 0.161 

9-sp 
LowD 5.2 30.0 2.47 0.010 0.0014 0.159 

HighD 5.1 29.6 2.56 0.010 0.0012 0.150 

Table S3.2 Results of soil analyses. Soil parameters depending on community type: time advance over 

invasive species (1- or 5-month), species composition (1-sp = 1 species, 3-sp = 3 species, 9-sp = 9 

species) and density (LowD = low density or HighD = high density). Here, time advance corresponds to 

the age of the recipient community at the time of soil analyses. 
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Figure S3.5 Final seedling emergence rate (mean±SE, n=4) relative to the control (0) of the invasive 

species (A) A. artemisiifolia, (B) B. barbinodis and (C) C. selloana, depending on recipient community type: 

time advance over invasive species (1- or 5-month), species composition (1-sp = 1 species, 3-sp = 3 

species, 9-sp = 9 species), and density (LowD = low density or HighD = high density). Values below or 

above zero refer respectively to decreased or increased final seedling emergence rate compared to the 

control. SE of the control (bare soil) is represented by a grey area. 

 

 

Figure S3.6 Final survival rate (mean±SE, n=4) relative to the control (0) of the invasive species (A) A. 

artemisiifolia, (B) B. barbinodis and (C) C. selloana, depending on recipient community type: time 

advance over invasive species (1- or 5-month), species composition (1-sp = 1 species, 3-sp = 3 species, 

9-sp = 9 species) and density (LowD = low density or HighD = high density). Values below or above zero 

refer respectively to decreased or increased final germination rate compared to the control. Red bars 

indicate no survivors. SE of the control (bare soil) is represented by a grey area. 
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Synthesis of Chapter 3 and transition to Chapter 4 

 

 

In Chapter 4 and 5, I focus on the results of a greenhouse experiment where assembly history 

of the recipient community was manipulated prior to invasion. I tested whether 

establishment timing of the recipient species (synchronous vs. sequential sowing) and the 

identity of the first established species influence recipient community structuring and 

subsequent invasion success. In Chapter 4, I focus on invasive species response. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure T.4 Chapter 4 in thesis organization. 

Chapter 3 in a nutshell 

How do invasion timing (i.e. elapsed time between recipient community sowing 

and invasive species introduction), recipient community composition and sowing 

density interact to influence priority effects and early invasion success? 

Giving a greater time advance to the recipient community enhanced early invasion 
resistance when the community produced a sufficient amount of aboveground 
biomass. The amount of biomass produced was related to species composition. 
Sowing density had a limited influence.   

Does providing efforts to delay invasion and manipulating the composition and 

density of seed mixes constitute efficient strategies to reduce early invasion? 

Manipulating species composition by including productive species could particularly 
improve early invasion resistance, while increasing sowing density appeared less 
impactful. Managing the timing of recipient community and invasive species 
establishment could also help decreasing invasion success. 
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Chapter 4 

 

Abstract 

Understanding the determinants of early invasion resistance is a major challenge for 

designing plant communities that efficiently repel invaders. Recent evidence highlighted the 

significant role of priority effects in early community assembly by affecting species 

composition, structure and functional properties, but few studies have investigated 

consequences of assembly history on invasion success. In a greenhouse experiment, we 

investigated how (1) the identity of the first native colonizing species (one of two grasses: 

Dactylis glomerata and Lolium perenne, or two legumes: Onobrychis viciifolia and Trifolium 

repens), each introduced four weeks before the rest of the native community, and (2) timing 

of species establishment (synchronous vs. sequential sowing), influenced early establishment 

success of Ambrosia artemisiifolia, an annual noxious weed in Europe. First colonizer identity 

and establishment timing both affected early biomass production and composition of the 

community as well as soil nutrient content, and had implications for A. artemisiifolia 

performance. Invasion resistance increased when all native individuals were sown 

simultaneously, quickly generating a high biomass production, and when the grass species 

L. perenne was sown first, most likely because of a high belowground biomass production. 

Giving a priority to the productive N-fixing legume T. repens conversely boosted A. 

artemisiifolia performance, presumably because of a lower belowground competition arising 

from a low initial biomass production, elevated soil N levels and low grass content. These 

findings support that assembly history matters to invasion resistance in the early growth 

stages, thus opening the way to more effective revegetation strategies. 

Key Words: priority effects, historical contingencies, revegetation, restoration, competition, 

Ambrosia artemisiifolia 
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4.1 | Introduction  

An increasing number of invasive species is causing disastrous consequences on the 

environment (Brondizio et al. 2019; Mollot et al. 2017), human well-being and economy 

(Charles & Dukes 2008; Pimentel 2009), and this increase is expected to intensify (Sala et al. 

2000; Seebens et al. 2015). Invasions are also often a serious impediment to the successful 

restoration of damaged environments (Norton 2009; Rowe 2010; Stromberg et al. 2007). 

Restorative activities, including soil disturbance and vegetation clearing, increase resource 

availability and decrease competition from neighbors, and can promote plant invasion 

(Cherwin et al. 2009; Davis et al. 2000; Jauni et al. 2015; Mack et al. 2000; McIntyre & Lavorel 

1994; Smith & Knapp 1999). Susceptibility to invasion decreases over time as the restored 

community establishes and displays a more complete use of available space and resources. 

Reducing invasive species establishment success in the early, vulnerable stages of 

community growth is therefore critical. Restoring a rapidly competitive native plant cover 

has been advocated as a method to reduce invasions (Blumenthal et al. 2003, 2005; Byun & 

Lee 2017; Larson et al. 2013; Middleton et al. 2010). However, the mechanisms generating 

rapid invasion resistance are still poorly known. 

Recent advances in community ecology have highlighted the defining role of historical 

contingencies (i.e. the effect of the order and timing of past events, being either abiotic or 

biotic) in community assembly and invasibility (Chase 2003; Fukami 2004, 2015; Körner et al. 

2008; Suding et al. 2004; Švamberková et al. 2019; Werner et al. 2016; Young et al. 2016). 

Priority effects, the ability of an early-arriving species to either inhibit or facilitate the 

establishment, growth or reproductive success of species arriving later (Drake 1991; Helsen 

et al. 2016), have recently received particular attention. Although priority effects often do 

not systematically generate changes persisting in the long-term (Collinge & Ray 2009; Young 

et al. 2016), numerous studies showed that even small differences in species arrival can 

induce dramatic changes in composition, structure and functional properties (e.g. 

productivity) at least for one growing season (Delory, Weidlich, von Gillhaussen et al. 2019; 

DeMalach & Fukami 2018; Ejrnaes et al. 2006; Grman & Suding 2010; Körner et al. 2008; 

Martin & Wilsey 2012; Plückers et al. 2013; Sarneel et al. 2016; Stevens & Fehmi 2011; Stuble & 

Young 2020; Vaughn & Young 2015; von Gillhaussen et al. 2014; Weidlich et al. 2018; Werner 

et al. 2016; Young et al. 2016). Priority effects could therefore affect early invasion resistance 

(Lang et al. 2017; Stevens & Fehmi 2011; Vaughn & Young 2015) and could be manipulated to 

design invasion resistant restored communities (Hess, Mesléard, Buisson 2019). In the early 

stages of community development, priority effects could be particularly impactful by 

influencing biomass production and species composition. 

Several studies have advocated for a substantial role of biomass production in invasion 

resistance, i.e. high biomass associated to lower invasibility (Byun & Lee 2017; Gaudet & 

Keddy 1988; Hess et al. 2020; Jiang et al. 2006; Lulow 2006; MacLaren et al. 2019; Mason et 

al. 2017; Rinella et al. 2007; Symstad 2000; Weigelt et al. 2002). Biomass production is an 

indicator of competitive ability (Gaudet & Keddy 1988), and high biomass may reflect a high 
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consumption of available resources so that, especially in the early stages, a highly productive 

community may preempt more resources than a less productive community may. 

Specifically, a high aboveground productivity is expected to increase competition for light, 

therefore being determinant for invasion success following disturbances and vegetation 

clearance (Baruch et al. 2000; Corbin & D’Antonio 2004; D’Antonio et al. 2001; Forrest 

Meekins & McCarthy 2001; Vitousek & Walker 1987). 

Other studies demonstrated that invasion resistance is strongly linked with community 

composition, i.e. the identity of the dominant species or functional group (e.g. Byun et al. 

2013; Crawley et al. 1999; Dukes 2002; Fargione & Tilman 2005; Hector et al. 2001; Mason et 

al. 2017; Symstad 2000). Notably, increased invasion resistance has been attributed to the 

presence of grasses (Crawley et al. 1999; Dukes 2002; Fargione & Tilman 2005; Mason et al. 

2017; Mwangi et al. 2007; Prieur-Richard et al. 2002; Scherber et al. 2006, 2010; Stuble & 

Young 2020), likely because of  their ability to strongly compete for limiting belowground 

resources such as nitrates thanks to a dense root system (Fargione et al. 2003; Scherber et 

al. 2010; Scherer-Lorenzen et al. 2003) or the reduction of light and space availability (Mason 

et al. 2017). In contrast, prior colonization by legumes has been shown to facilitate 

subsequent species establishment and performance (Frankow-Lindberg 2012; Temperton et 

al. 2007; von Felten et al. 2009; von Gillhaussen et al. 2014; Weidlich et al. 2016, 2018), and the 

presence of legumes has been positively correlated to a greater invasion success (Scherber 

et al. 2006; Mwangi et al. 2007). This facilitative effect has been attributed to their ability to 

fix atmospheric nitrogen and directly transferring it to neighbors via root exudation and 

mycorrhizal links (Govindarajulu et al. 2005; Paynel et al. 2001), or releasing it into the soil 

by decomposition (Tomm et al. 1995). In addition, due to nitrogen fixation, nitrogen-fixing 

legumes display a small root system and preempt low amounts of soil nitrogen, leaving more 

opportunities for root and nutrient foraging of subsequent arriving species (Temperton et 

al. 2007; von Felten et al. 2009). In general, invasive plants are favored by higher soils nutrient 

levels (Zefferman et al. 2015) . Conversely, the presence of legumes also has been associated 

with a high aboveground productivity (Hess et al. 2020; von Gillhaussen et al. 2014; Weidlich 

et al. 2016), so that a prior establishment of legumes may lead to a higher biomass (Delory, 

Weidlich, von Gillauhssen et al. 2019; Frankow-Lindberg 2012; Mwangi et al. 2007; Roscher 

et al. 2011), and could therefore reduce invasion success.  

In the context of invasions, priority effects have usually been examined in terms of the 

consequences for invasive species to arrive before or after natives (Delory, Weidlich, Kunz 

et al. 2019; Grman & Suding 2010; Lang et al. 2017; Stevens & Fehmi 2011; Stuble & Souza 2016; 

Vaughn & Young 2015). Studies investigating how differences in native assembly history 

affect subsequent invasion events are scarcer. In a greenhouse experiment, we established 

native perennial communities differing by (1) the identity of the first colonizer (either of two 

grasses: Dactylis glomerata and Lolium perenne, or two legumes: Onobrychis viciifolia and 

Trifolium. repens), and (2) timing of species establishment (synchronous vs. sequential 

sowing), in which we subsequently simulated invasion by introducing seeds of Ambrosia 

artemisiifolia, a noxious weed in Europe (Ozaslan et al. 2016). We sought to examine whether 
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these differences community assembly influence the success of subsequent invasion, and if 

so, assessing whether invasion success is related to variations in biomass production, soil 

chemistry, and/or community composition (i.e. the identity of the dominant species or 

functional group).  

4.2 | Material and Methods 

4.2.1 | Native species selection 

Six perennial plant species widely used for revegetation in France were selected to compose 

the recipient native communities: Dactylis glomerata (Poaceae), Lolium perenne (Poaceae), 

Onobrychis viciifolia (Fabaceae), Trifolium repens (Fabaceae), Plantago lanceolata 

(Plantaginaceae), and Poterium sanguisorba (Rosaceae). Commercial seeds were purchased 

from seed suppliers ZYGENE and SCHEIER France. 

4.2.2 | Invasive species seed collection and stratification 

 The common ragweed (Ambrosia artemisiifolia L., Asteraceae) is an annual plant native 

from North America (Heckel 1906) successfully invading disturbed areas such as roadsides, 

riverbanks, abandoned and cultivated fields in numerous European countries (Smith et al. 

2013). The species can produce up to 14,000 achenes per plant, which are mainly dispersed 

by human activities (Bassett & Crompton 1975). Achenes from A. artemisiifolia were collected 

from at least ten individuals from each of three mature populations in South-eastern France 

in autumn 2018 and pooled (population 1: 43°33'4.5" N, 4°7'40.8" E; population 2: 43°31'2.2" N, 

5°19'56.2" E; population 3: 43°34'17.8" N, 4°17'8.8" E). Before starting the experiment, achenes 

were put between two layers of cotton soaked with distilled water and cold-stratified for 20 

weeks (wet, dark stratification at 4°C) in order to break primary dormancy. After 

stratification, we assessed the germination capacity of 50 seeds placed in Petri dishes on 

cotton soaked in distilled water. Petri dishes were placed in optimum germination conditions 

(25 °C/12 h day and 15 °C/12 h night; Fumanal et al. 2007), and germination was recorded 

every two days until no additional germination was recorded. After ten days, the final 

germination rate was of 98.0%±2.0 (mean±SE). 

4.2.3 | Study site and infrastructure 

The experiment was conducted over six months (early March until early September 2019) in 

a greenhouse at the Research Institute of Tour du Valat, France (43°30’N, 4°40’E, 1m 

elevation). Walls and roof of the greenhouse are made of Diatex mesh (500-600 µm) so that 

similar ambient climate conditions occurred inside but seed dispersal was prevented. The 

site was subjected to a Mediterranean climate, characterized by warm and dry summers and 

mild, wet winters, with high variability between years (Lionello et al. 2006). Precipitation and 

air temperature data were recorded using a meteorological station located close to the 

experimental site (Supplementary material, Figure S4.1). We established the artificial plant 

communities in square plastic pots with an upper width of  30.5 cm and a bottom width 25 

cm, 27 cm deep, which were filled with, from bottom to top (1) a 27 cm diameter polyester 
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tissue (© Diatex, 50-70 µm mesh  size) to prevent loss of substrate, (2) a 20 cm width × 10 cm 

deep polystyrene bloc allowing water to flow at the sides, and (3) a substrate mixture of 

vermiculite (30 vol%; © Projar, 2.6 kg/m3) and commercial organic fertile topsoil (70 vol%; 

© Géolia) (Figure S3.2) . Pots were watered with equal amounts of water through sprinklers. 

The amount of supplied water was regularly adjusted to ensure moisture conditions suitable 

to germination and plant development. We ended the experiment in early September to 

avoid confounding effect of A. artemisiifolia natural senescence (Li et al. 2015). 

4.2.4 |Experimental design  

We designed six types of recipient plant communities differing by the identity of the first 

species established, but all getting all six species eventually (Figure 4.1). We ensured an 

identical final spatial arrangement of the communities by using cardboard patterns with 

holes, each hole corresponding to a seeding location. On March 6, we created four priority 

treatments by introducing 18 seeds of either (1) D. glomerata (treatment name Dactylisf, with 

‘f’ standing for ‘first’), (2) L. perenne (Loliumf), (3) O. viciifolia (Onobrychisf), or (4) T. repens 

(Trifoliumf) per pot. We also introduced (5) three seeds of each of the six species per pot, for 

the same number of initial seeds as the priority treatments (Synchronousseq) or (6) 18 seeds 

of each of the six species per pot, which corresponds the simultaneous sowing of all 

individuals at full density (Synchronous). Ungerminated seeds were regularly replaced by 

individuals sown in separate pots on March 6 to ensure similar age and density of individuals. 

After four weeks (i.e. on April 3), we carried out a second sowing (except for Synchronous) 

by adding the rest of the species so that each pot contained 18 individuals of each of the six 

species, achieving a total of 108 seeds (corresponding to 1200 seeds/m²). Plantago lanceolata 

and P. sanguisorba were added to the four priority-tested species in order to create 

communities that were more diverse and to reach the desired individuals density while 

keeping an identical and adequate spatial pattern. Therefore, Synchronousseq had the same 

density and sowing timing as Dactylisf, Loliumf, Onobrychisf and Trifoliumf, but did not give 

priority to any particular species. This assembly type tested the role of sowing density in 

itself to invasion resistance. Ungerminated seeds were regularly replaced by individuals 

sown in separate pots on April 3. 

On April 18, six weeks after the first sowing event and two weeks after the second sowing 

event, we introduced in each pot nine seeds of A. artemisiifolia at fixed positions, 8 cm apart 

from each other (Figure 4.1). There were 12 replicates of each assembly type (Dactylisf, 

Loliumf, Onobrychisf, Trifoliumf, Synchronousseq and Synchronous), totaling 72 pots (Figure 

4.2). Pot distribution in the greenhouse followed a randomized design and pots was 

randomized every two weeks. 
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Figure 4.1 Experimental design. Spatial arrangement of individuals in pots (represented by 

squares) is depicted depending on assembly type. In the second sowing, all communities were 

completed to achieve same species abundance and spatial pattern (no seed was added for 

Synchronous). 
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4.2.5 | Data collection 

Invasive species early establishment success 

We assessed early establishment success of A. artemisiifolia by monitoring seedling 

emergence and survival each week from April 30 to September 2, the number of leaves every 

two weeks (from June 18 to August 27), and final aboveground biomass (September 2). 

Aboveground biomass of each individual was collected 0.5 cm above ground level, dried at 

60°C for 72h and weighed. Growth-related parameters (i.e. number of leaves and 

aboveground biomass) are hereafter referred as ‘performance’.  

Recipient communities 

We measured aboveground and belowground biomass of the communities three times 

during the experiment. For this purpose we harvested (1) three pots per assembly type when 

A. artemisiifolia’s seeds were introduced (hereafter ‘initial’ – on April 18), (2) three pots per 

assembly type midway through the experiment, on June 13 (hereafter ‘intermediate’), and (3) 

six pots per assembly type at the end of the experiment (hereafter ‘final’ – September 2). For 

each pot, aboveground biomass was harvested, sorted by species and dried at 60°C for 72h 

until weighed. Belowground biomass was measured by collecting one soil core (12 cm 

diameter × 16 cm deep) at the center of each pot. Since we were not able to identify and sort 

the roots of the different species, we measured total belowground dry biomass including 

native species and A. artemisiifolia roots. Roots were isolated from soil, washed and sieved 

with a 250µm mesh, dried at 60°C for 72 h, and weighed.  

Figure 4.2 Recipient communities on April 3, 2019. 
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Soil analyses 

One of the ways that established community composition and biomass production can 

influence subsequent colonizing species success is through modification of soil resource 

availability (MacLaren et al. 2019; Temperton et al. 2007; von Felten et al. 2009). We therefore 

analyzed organic carbon, nitrogen, nitrates, ammonium and available phosphorus on soil 

samples collected from each pot at the end of the experiment. For each assembly type, we 

collected 24 soil cores of 10 mm diameter × 100 mm deep (four per pot), which were pooled 

and dried for 48h at 40°C and sieved (<2 mm) to remove roots and rocks. Control soil (i.e. soil 

before recipient community establishment) was also added to the analyses. Samples were 

analyzed for (1) organic carbon by sulfochromic oxidation (NF ISO 14234, 1998), (2) total 

nitrogen by the modified Kjeldhal method (NF ISO 11261, 1995), (3) nitrate NO3
- and 

ammonium NH4
+ (NF ISO 14256-2, 2007), and (4) available phosphorus P2O5 by the Dyer 

method (NF X31-160, 1999). Standard French method AFNOR or standard international 

method ISO were used to determine soil parameters. Analyses were performed by the 

accredited soil analysis laboratory Teyssier (Bourdeaux, France), following standard 

protocols. 

4.2.6 | Data analyses 

Invasive species early establishment success 

We used generalized linear mixed models (GLMMs) with Laplace approximation (‘glmer’ 

function in the ‘lme4’ package; Bates 2010) for maximum likelihood estimation of the 

parameters (Bolker et al. 2009) to analyze variations in (1) cumulative final seedling 

emergence (until June 4; no new emergence was recorded after this date) and survival 

(September 2) of A. artemisiifolia seedlings, with a binomial error distribution and a logit-

link function (Table 4.1) (2) final number of leaves (i.e. August 27) of A. artemisiifolia 

individuals with negative binomial error distribution to account for overdispersion and a log-

link function, and (3) number of leaves of A. artemisiifolia individuals over time with Poisson 

error distribution and a log-link function. We analyzed variations in final aboveground 

biomass (i.e. September 2) of A. artemisiifolia using a linear mixed model with Gaussian error 

distribution (data was log transformed to fit into a Gaussian distribution; ‘lmer’ function of 

the ‘lme4’ package; Bates 2010). 

Analyses of seedling emergence, survival, final number of leaves and final aboveground 

biomass included assembly type (Dactylisf, Loliumf, Onobrychisf, Trifoliumf, Synchronousseq, 

Synchronous) as fixed predictor variable and pot as random factor. Upon finding a significant 

effect of the fixed effect assembly type ( significance tested using type II sums of squares 

using the ‘Anova’ function in ‘car’ package; Fox & Weisberg 2019), we conducted post-hoc 

pairwise contrasts comparisons with a Tukey adjustment (‘emmeans’ package; Lenth et al. 

2019).   

Analyze of number of leaves over time included assembly type in interaction with date 

(monitoring date, each two weeks) as fixed predictor variables and pot and individuals nested 
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within pots as random factors. Two models were built to analyze the first slow growing phase 

(June 18 to July 30) and a second faster growing phase (July 30 to August 27) separately. Upon 

finding a significant effect of the interaction between assembly type and date, we conducted 

post-hoc comparisons of interaction terms (i.e. slope estimates) between each pair of 

assembly types using the function ‘emtrends’ (‘emmeans’ package; Lenth et al. 2019), with a 

Tukey adjustment.  

Analyze of seedling emergence included the 81 seeds sown per assembly type and survival 

included emerged individuals in six pots per assembly type (from 50 to 54 individuals; 

Supplementary material, Table S4.1). Analyze of performance (i.e. number of leaves and 

biomass) included all individuals surviving until the end of the experiment in six pots per 

assembly type (from 40 to 53 individuals; Supplementary material, Table S4.1). 

Recipient communities 

We analyzed the effect of assembly type on (1) total recipient species aboveground biomass 

and (2) total belowground samples (native and invasive) biomass for the three harvests using 

a one-way ANOVA. When a significant effect was found, we performed pairwise comparisons 

on the least-squares means (LSM) with a Tukey adjustment (‘emmeans’ package; (Lenth et al. 

2019). When residuals did not satisfied normality and/or homoscedasticity assumptions, we 

performed Welch’s heteroscedastic F tests with trimmed means and Winsorized variances 

(‘welch.test’ function in ‘onewaytests’ package; Dag et al. 2018; Welch 1951), which are 

relatively insensitive to the combined effects of non-normality and heteroscedasticity 

(Keselman et al. 2008). When a significant effect was found, post-hoc multiple pairwise 

comparison tests were performed with a BH adjustment (‘paircomp’ function in 

‘onewaytests’ package; Dag et al. 2018). All analyses of biomass were conducted on three pots 

per assembly types, except final aboveground biomass conducted on six pots per assembly 

type. We also calculated the contribution of legumes and grasses by summing aboveground 

biomass of O. viciifolia and T. repens, and D. glomerata and L. perenne, respectively. 

All analyses were performed using R software (ver. 3.6.2). The p-values lower than 0.05 were 

considered as statistically significant. 

4.3 | Results 

4.3.1 | Invasive species early establishment success 

Seedling emergence and survival of A. artemisiifolia were high across all assembly types (i.e. 

97.3%±1.0 and 93.3%±3.1, mean±SE, respectively; Supplementary material, Table S4.1). 

Assembly type did not significantly affect A. artemisiifolia seedling emergence (Wald ꭓ²=3.70, 

df=5, p=0.59) or survival (Wald ꭓ²=4.48, df=5, p=0.48).  

Assembly type significantly affected A. artemisiifolia final number of leaves (Anova Type II: 

Wald ꭓ²=53.37, df=5, p<0.001) and final aboveground biomass (Anova Type II: Wald ꭓ²=59.056, 

df=5, p<0.001). Both final number of leaves and aboveground biomass were (1) significantly 

lower for Synchronous than for all other assembly types except Loliumf (Figure 4.3), and (2) 
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significantly higher for Trifoliumf than for all other assembly types (Figure 4.3), except in 

Onobrychisf and Dactylisf for final aboveground biomass (Figure 4.3B). 

 

Figure 4.3 Ambrosia artemisiifolia (A) final number of leaves, and (B) final aboveground biomass 

depending on assembly type (mean per individual ±SE, ntot=324). Assembly types with no letter in 

common are significantly different (pairwise contrasts comparisons with Tukey adjustment; p<0.05). 

 

For the two considered growing phases, A. artemisiifolia number of leaves over time 

depended upon assembly type (June 18 to July 30: Anova Type II: Wald ꭓ²=21.84, df=5, p<0.001; 

July 30 to August 27: Anova Type II: Wald ꭓ²=174.947, df=5, p<0.001; Figure 4.4). From June 18 

to July 30, the slope (i.e. increase in leaf number) was significantly lower for Synchronous 

than for all other assembly types except for Synchronousseq (Figure 4.4B). From July 30 to 

August 27, the slope was (1) significantly lower for Synchronous than for all other assembly 

types except for Loliumf and Onobrychisf, and (2) significantly higher for Trifoliumf than for 

all other assembly types (Figure 4.4D). 
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Figure 4.4 Number of leaves (mean per individual ±SE, ntot=324) of A. artemisiifolia over time, depending on assembly type (A) 

from June 18 to July 30, and (C) from July 30 to August 27 (note the changing y-axis scales) and slope estimates (interaction between 

date × assembly type) of the GLMM modeling the variation of number of leaves of A. artemisiifolia depending on time and assembly 

type (B) from June 18  to July 30 and (D) from July 30 to August 27. Assembly types with no letter in common are significantly 

different (pairwise contrasts comparisons with Tukey adjustment; p<0.05). 
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4.3.2 | Recipient community biomass 

Assembly type significantly affected recipient communities above- and belowground 

biomass, at all harvest times (Figure 4.5; Supplementary material, Table S4.2). For the initial 

harvest, (1) aboveground biomass was significantly higher in Synchronous than in all other 

assembly types and significantly lower in Trifoliumf than in all other assembly types except 

Synchronousseq (Figure 4.5A), and (2) belowground biomass was significantly higher in 

Synchronous than in all other assembly types (Figure 4.5D). Also, legumes contributed to 

aboveground biomass (1) more than grasses in Onobrychisf, Trifoliumf and Synchronousseq, 

and (2) less than grasses in Dactylisf, Loliumf and Synchronous (Table 4.1). For the 

intermediate harvest, (1) aboveground biomass was significantly higher in Trifoliumf than in 

all other assembly types (Figure 4.5B), and (2) belowground biomass was not significantly 

different between assembly types (Figure 4.5E). Also, legumes contributed to aboveground 

biomass (1) more than grasses in Trifoliumf, and (2) less than grasses in all other assembly 

types (Table 4.1). For the final harvest, (1) aboveground biomass was significantly lower in 

Dactylisf and Loliumf than in Synchronous (Figure 4.5C), and (2) belowground biomass was 

significantly higher in Loliumf than in Onobrychisf and Trifoliumf (Figure 4.5F). Legumes 

contributed to aboveground biomass (1) less than grasses in Loliumf, and (2) more than 

grasses in all other assembly types (Table 4.1). 
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Figure 4.5 Above and belowground biomass of the recipient communities depending on assembly 

type for (A,B) initial (April 18), (B,E) intermediate (June 13), and (C,F) final (September 2) harvests. 

Aboveground biomass (A,B,C) represents total biomass per pot (mean±SE, na,b=3, nc=6) and 

includes native species only, while belowground biomass (D,E,F) represents sample biomass per 

pot (mean±SE, n=3) and includes both native and invasive species. Treatments with no letter in 

common are significantly different (pairwise comparisons with Tukey adjustment; p<0.05). ‘NS’ 

indicates to non-significant post-hoc differences between assembly types. 
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 Legumes  Grasses  
Ratio 
L:G  Biomass (g) 

Contribution to 
biomass (%) 

 Biomass (g) 
Contribution 
to biomass 

(%) 
 

   Initial 
       

Dactylisf 0.16±0.00 28.2±3.9  0.38±0.09 62.1±8.4  0.42 
Loliumf 0.13±0.01 22.3±1.1  0.43±0.04 71.6±1.7  0.30 
Onobrychisf 0.59±0.02 87.9±0.2  0.02±0.00 3.6±0.1  29.5 
Trifoliumf 0.25±0.03 73.1±5.6  0.02±0.00 7.1±0.6  12.5 
Synchronousseq 0.24±0.02 48.8±2.7  0.16±0.03 32.0±3.3  1.5 
Synchronous 0.55±0.03 34.5±1.4  0.74±0.03 46.0±1.5  0.74 

   Intermediate 
       

Dactylisf 0.81±0.15 9.6±1.6  7.34±0.3 87.5±1.5  0.11 
Loliumf 0.64±0.04 5.6±0.5  10.79±1.56 91.5±1.1  0.06 
Onobrychisf 1.98±0.64 22.6±4.0  5.36±0.52 65.2±2.6  0.37 
Trifoliumf 20.05±2.29 83.2±2.1  3.5±0.19 14.9±1.9  5.72 
Synchronousseq 1.72±0.24 19.3±2.3  6.28±0.62 70.5±2.1  0.27 
Synchronous 3.16±0.77 22.7±3.0  9.40±0.95 69.4±3.0  0.37 

   Final 
       

Dactylisf 24.75±3.18 47.5±3.2  18.23±1.44 35.7±2.6  1.35 
Loliumf 8.90±3.09 20.3±6.0  23.35±1.65 61.5±6.5  0.38 
Onobrychisf 31.38±7.59 49.1±7.0  17.15±1.11 32.8±5.5  1.79 
Trifoliumf 53.15±11.73 64.1±4.3  10.91±1.81 14.2±2.5  4.87 
Synchronousseq 25.40±4.17 41.8±4.5  20.27±1.40 35.1±3.4  1.25 
Synchronous 44.08±3.58 55.3±2.2  15.98±0.98 20.5±1.9  2.75 

Table 4.1 Aboveground biomass of legumes (sum of O. viciifolia and T. repens, mean±SE) and 

grasses (sum of D. glomerata and L. perenne, mean±SE) for each assembly type for initial (April 18, 

n=3), intermediate (June 13, n=3), and final (September 2, n=6) harvests. Contribution to total 

biomass (mean%±SE), and ratio between mean biomass of legumes and grasses (‘Ratio L:G’; 

mean±SE) are also indicated, with ratios > 1 in bold (i.e. mean biomass of legumes exceeds mean 

biomass of grasses). 
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4.3.3 | Soil analyses 

Compared to control soil (i.e. soil before recipient community establishment), all planted 

treatments depleted the soil of available phosphorus and nitrates (Table 4.2). Trifoliumf 

communities produced soils with greater concentrations of nitrates and ammonium than 

any other treatments, including the other legume species. Loliumf showed the lowest 

content of nitrates.  

 
Total 

organic 
matter (%) 

C (g/kg) N (g/kg) NO3- 

(g/kg) 
NH4+ 

(g/kg) 
P2O5 

(g/kg) 

Dactylisf 11.0 63.6 4.1 0.007 0.012 0.078 

Loliumf 11.1 64.6 4.4 0.003 0.010 0.074 

Onobrychisf 11.3 65.7 5.0 0.005 0.012 0.076 

Trifoliumf 11.1 64.3 5.2 0.010 0.015 0.070 

Synchronousseq 11.3 65.7 4.6 0.007 0.012 0.070 

Synchronous 11.4 66.1 4.4 0.008 0.010 0.083 

Control soil 11.2 65.0 4.5 0.011 0.005 0.136 

 

4.4 | Discussion 

This study provides evidence for a significant role of assembly history in invasion resistance 

during the early stages of community development and thus corroborates numerous recent 

studies (Delory, Weidlich, Kunz et al. 2019; Firn et al. 2010; Grman & Suding 2010; Lang et al. 

2017; Stevens & Fehmi 2011; Stuble & Young 2020; Vaughn & Young 2015; Young et al. 2016). 

Altering (1) the identity of the first colonizer, whose establishment preceded other species 

arrival by four weeks, and (2) species establishment timing (i.e. synchronous vs. sequential 

sowing) both significantly affected the performance (i.e. leaf and biomass production) of the 

invasive plant A. artemisiifolia (Figures 4.3, 4.4). Seedling emergence and survival did not 

significantly differ and were high across all communities (97.3%±1.0 and 93.3%±3.1, mean±SE, 

respectively; Supplementary material, Table S4.1). This finding is in accordance with the 

results of the meta-analysis of Levine et al. (2004) showing that competitive interactions 

with native species are more likely to reduce invaders performance than totally repel 

invasions. 

Differences in assembly history influenced early community composition, although it tended 

to converge after six months (Figure 4.4). Ambrosia artemisiifolia exhibited the lowest overall 

performance in Synchronous, where all recipient individuals were sown at the same time 

(Figures 4.3, 4.4). Receiving more seeds in the first two weeks allowed Synchronous to reach 

high biomass more quickly (Figure 4.4A,D), which is likely to be responsible for lower A. 

artemisiifolia success at the end of the experiment. This is particularly underlined by the 

Table 4.2 Results of soil analyses performed at the end of the experiment. Control soil refer to soil 

before recipient community establishment. 
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lower resistance of Synchronousseq (sequential sowing), since both assembly types differed 

in initial biomass production while sharing close intermediate and final biomass (Figure 

4.5B,C,E,F), species composition (Figure 4.5B,C; Table 4.1) and soil nutrient contents (Table 

4.2). These results emphasize the importance of an initial quick and high biomass production 

to counter invasion (Lulow 2006; Mason et al. 2013, 2017; Rinella et al. 2007; Symstad 2000). 

These results also indicate that sequential sowing may increase community vulnerability to 

invasion (Martin & Wilsey 2012; Stuble & Young 2020), challenging the implementation of this 

sowing technique in invaded restoration sites. 

Competition for light is considered to be particularly limiting in early community assembly, 

especially in high soil resource conditions (Kardol et al. 2013). Our results however suggest 

that belowground competition had a substantial implication in early invasion resistance. 

Ambrosia artemisiifolia final leaf and biomass production appeared to be similarly affected 

in Loliumf and Synchronous (Figure 4.2), while Loliumf displayed a lower aboveground 

biomass (Figure 4.5A,C). Invasion resistance of Loliumf was presumably associated to its high 

intermediate and final belowground biomass (Figure 4.5E,F) and low nitrate soil content 

(Table 4.2), both most likely arising from a low legumes:grasses ratio (Table 4.1) and L. perenne 

dominance, which is a strong competitor for belowground resources (Frankow-Lindberg 

2012; Snaydon & Howe 1986). The importance of competition for soil resources was also 

supported by the enhanced performance of A. artemisiifolia in Trifoliumf. Despite producing 

high intermediate and final community aboveground biomass, (Figure 4.5B,C), prior 

establishment of the N-fixing legume T. repens boosted A. artemisiifolia performance 

(Figures 4.3, 4.4C,D). The reduced invasion resistance of Trifoliumf may result from a lower 

competition for root space and belowground resources (Scherber et al. 2010; Scherer-

Lorenzen et al. 2003) arising from a (1) low total initial biomass production of the community 

(Figure 4.5A,D), (2) greater response of A. artemisiifolia to elevated soil N level (Table 4.2; 

Govindarajulu et al. 2005; Paynel et al. 2001; Temperton et al. 2007; von Felten et al. 2009), 

or (3) a low grass content (Table 4.1). Such results contrast with the findings of Rinella et al. 

(2007), where productivity of certain plant groups did not matter for invasion success while 

overall productivity did. In their study, invasion however occurred in diverse, well-

established communities after the removal of particular plant groups, which led to a high 

remaining species diversity and signs of diversity saturation.  

In opposition to our findings, Mason et al. (2013) found that different arrival orders of native 

functional groups did not affect the abundance and cover of the exotic shrub 

Chrysanthemoides monilifera spp. rotundata, nor biomass production of the recipient 

community or soil resources availability. The main impactful difference between our two 

studies seems to be that Mason et al. (2013) avoided planting nitrogen fixers, which 

generated contrasting compositions in our study (Figure 4.4). Including legumes in our 

recipient communities was relevant in an applied perspective, since seed mixes used for 

restoration and revegetation often contain nitrogen-fixing species (Beyhaut et al. 2014). In 

addition, since Mason et al. (2013) simulated invasion seven months after the first sowing 

event (against six weeks in our study): initial differences between communities may have 
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decrease over time (Körner et al. 2008), less affecting subsequent invaders. Finally, they used 

a competitive shrub successfully colonizing mature plant communities (French et al. 2008; 

Mason et al. 2012), which may be less sensitive to competition than A. artemisiifolia, reported 

as a weak competitor in resource-rich environments (Leskovsek et al. 2012). Therefore, the 

identity of the invasive species may have also contributed to these contrasting findings. 

Overall, our study supports that colonization history matters to invasion success when 

invasion occurs in the early stages of community assembly. Altering the timing of species 

establishment (all together or sequential sowing) and the identity of the first native colonizer 

affected early biomass production and composition of the community as well as soil nutrient 

content, and had implications for invader’s performance. Notably, communities reached a 

higher invasion resistance when displaying quickly a high native below or aboveground 

biomass, a reduced early contribution of productive legumes, or both. Thus, when immediate 

invasion risk is high in a restored site, establishing productive, densely sown native 

communities and avoiding an early planting of highly productive N-fixing legumes may help 

decrease invasion success. 
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Supplementary material 

 

 

  

Seedling emergence ntot nemerged % (mean±SE) 

Dactylisf 81 81 100.0±0.0 
Loliumf 81 79 97.5±1.6 
Onobrychisf 81 80 98.8±1.2 
Trifoliumf 81 76 93.8±2.7 
Synchronousseq 81 80 98.8±1.2 
Synchronous 81 77 95.1±2.7 

Survival ntot nsurvival % (mean±SE) 

Dactylisf 53 53 100.0±0.0 
Loliumf 54 53 98.1±1.9 
Onobrychisf 53 49 90.7±3.4 
Trifoliumf 50 40 80.5±10.2 
Synchronousseq 53 53 100.0±0.0 
Synchronous 51 46 90.2±4.5 

Figure S4.1 Temperature (daily mean in °C) and rainfall (daily sum in mm) 

recorded during the experiment (Meteo France station number 133004003, 

Tour du Valat domain, France). 

 

Table S4.1 Final cumulative percentage of seedling emergence (4 

June, mean of nine pots ±SE) and survival (2 September, mean of 

six pots ±SE) depending on assembly type. For each assembly type, 

total number of individuals included in the analyses (ntot), total 

number of emerged individuals (nemerged) and total number of 

surviving individuals (nsurvival) are also indicated. 
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 Statistical analysis F df p 

   Initial 
    

Aboveground ANOVA 71.21 5 <0.001 

Belowground ANOVA 27.57 5 <0.001 

   Intermediate 
    

Aboveground ANOVA 17.33 5 <0.001 

Belowground Welch’s heteroscedastic F 4.78 5 0.049 

   Final 
    

Aboveground Welch’s heteroscedastic F  10.46 5 <0.001 

Belowground ANOVA 5.49 5 0.007 

 

Table S4.2. Results of one-way ANOVA and Welch’s heteroscedastic F tests 

testing the effect of assembly type on above- and belowground biomass of the 

communities for initial (April 18, n=3), intermediate (June 13, n=3), and final 

(September 2, n=6 for aboveground, n=3 for belowground) harvests. Statistical 

analysis, test statistic (F), degrees of freedom (df) and p-values (p) are indicated. 
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Synthesis of Chapter 4 and transition to Chapter 5 

 

 

In Chapter 4, I focused on invasive species response to differences in assembly history of the 

invaded community. In Chapter 5, I analyze more specifically how priority effects generated 

by differences in assembly history affect the structuring of the native community.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 in a nutshell 

Does assembly history of the recipient community (timing of species 

establishment and identity of the first arriving species) influence early invasion 

resistance? 

Both (1) timing of recipient species establishment (synchronous or sequential arrival) 
and (2) identity of the first arriving species influenced early invasion resistance. 
Sequential sowing overall weakened invasion resistance compared to a synchronous 
sowing. The identity of the first arriving species influenced invasive species 
performance most likely through the preemption of aboveground resources (i.e. a 
quick a high preemption leading to greater resistance).   

Is sequential sowing a possible way to reinforce early invasion resistance? 

Sequential sowing generally decreased invasion resistance, and therefore does not 
appear as a potential method to reinforce invasion resistance of newly established 
communities. 

Figure T.5 Chapter 5 in thesis organization. 
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Species-specific priority effects influence 

early community structuring 

_______________________________________________ 
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Chapter 5 

 

 

Abstract 

How historical contingencies affect plant community assembly is poorly known. The 

influence of priority effects, arising from the order by which species establish in a 

community, has been mainly investigated at the functional group level (e.g. grasses, non-

leguminous forbs and legumes). However how within-group species identity matters has 

only been rarely explored. In a greenhouse experiment, we investigated how species identity 

(Dactylis glomerata or Lolium perenne, two grass species, and Onobrychis viciifolia or 

Trifolium repens, two legume species) established four weeks before the rest of the 

community influenced community structuring (i.e. aboveground biomass composition) over 

one growing season. Early sown species benefited differently from time advance. Time 

priority benefited less to (1) T. repens, which displayed competitive abilities allowing it to 

dominate the community when sown in advance or simultaneously to the rest of the 

community, and (2) O. viciifolia, for which a four-week time advance was not sufficient to 

enable it to persist. L. perenne benefited the most of a time advantage, most likely because 

of its high ability to preempt soil resources and space. Our results overall show that assembly 

history (i.e. timing of species arrival) interacts with deterministic processes (i.e. species-

specific competitive abilities) to drive early community assembly. 

Keywords: historical contingencies, community assembly, assembly history, order of arrival, 

perennial, competition, grass, legume 
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5.1 | Introduction 

Community assembly has received considerable attention for more than a century, with an 

early focus on succession theory (Clements 1916; Cowles 1899). Community succession 

theory posits that community assembly under identical environmental conditions will follow 

deterministic rules and converge toward a single, deterministic set of species, where the 

most competitive species dominates regardless of history. Alternatively, assembly theory 

assumes a crucial role for historical contingencies so that communities diverge toward 

multiple, stochastic endpoints based on events occurring during the assembly process 

(Chase 2003; Diamond 1975; Drake 1990). In this scenario, assembly outcome is strongly 

dependent on stochastic historical events being either abiotic (i.e. disturbances such as fire, 

flood or landslide) or biotic (i.e. the frequency of colonization events for a given species, or 

the order of species arrival (Fukami 2015). Specifically, the order of species arrival can 

influence species effects on one others through priority effects (Drake 1991). Priority effects 

arise from multiple non-exclusive processes, such as resource preemption (i.e. reduction of 

available space, light, and/or nutrients by early colonizers; Cleland et al. 2015; Kardol et al. 

2013; Marushia et al. 2010; Vance 1984; Wainwright et al. 2012), or alteration of biotic (e.g. 

predators, soil microorganisms) and abiotic (e.g. nutrient dynamics, allelochemicals) 

components of the environment (Corbin & D’Antonio 2012; Helsen et al. 2016; Mangla & 

Callaway 2008).  Early colonizers can therefore dominate or persist in a community even if 

they are poor competitors, because priority effects allow equalizing or elevating their fitness 

relative to later colonizers (Chase 2010; De Meester et al. 2016; Ejrnaes et al. 2006; Ross & 

Harper 1972; Weiner 1990). 

Priority effects have mainly been investigated at the functional group level such as grasses 

and forbs (Stuble & Young 2020; Werner et al. 2016) or grasses, non-leguminous forbs and 

legumes (Delory, Weidlich, von Gillhaussen et al. 2019; Körner et al. 2008; von Gillhaussen et 

al. 2014; Weidlich et al. 2018, 2016). Grasses have been shown to cause strong negative 

priority effects because of a higher investment in root biomass than forbs (Körner et al. 2008; 

Poorter et al. 2015), and a strong competition for belowground resources (Scherber et al. 

2010; Scherer-Lorenzen et al. 2003). Legumes in contrast may facilitate subsequent species 

establishment because of their ability to fix atmospheric nitrogen and transferring it to 

neighbors through mycorrhizal links and root exudation (Govindarajulu et al. 2005; Paynel 

et al. 2001), or through decomposition (Tomm et al. 1995). However, within-group 

competitive hierarchies have been highlighted (Turnbull et al. 2004, 2005), so that species-

specific variations could occur. In a greenhouse study, we tested whether the identity of the 

first established species, introduced four weeks before the rest of the community, influenced 

community structuring (i.e. aboveground biomass composition) over one growing season. 

Time priority was given to one of two grass species, Dactylis glomerata or Lolium perenne or 

one of two nitrogen-fixing legumes, Onobrychis viciifolia or Trifolium repens. 
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5.2 | Materials and Methods 

The study site and experimental design are described in details in Chapter 4. Here, we only 

reiterate aspects of relevance to the current study. 

5.2.1 | Study site and infrastructure 

The experiment took place in 2019 in a greenhouse at the Research Institute of Tour du Valat, 

France (43°30’N, 4°40’E, 1m elevation). Plant communities were established in square plastic 

pots (upper width of  30.5 cm and 25 cm width at the bottom, 27 cm deep) filled with, from 

bottom to top (1) a 27 cm diameter polyester tissue (© Diatex, 50-70 µm mesh  size) to 

prevent loss of substrate, (2) a polystyrene bloc (20 cm width × 10 cm deep) allowing water 

to flow at the sides, and (3) a substrate mixture of vermiculite (30 vol%; © Projar, 2.6 kg/m3) 

and commercial organic fertile topsoil (70 vol%; © Géolia), which was fertile (N=4.520 g/kg, 

NO3
- =0.011 g/kg, NH4

+ =0.005 g/kg, P2O5 =0.136 g/kg; Figure S3.2). Water was supplied 

through sprinklers placed equidistantly. 

5.2.2 | Experimental design 

Communities were composed of six native perennial plant species in France: Dactylis 

glomerata L. (Poaceae), Lolium perenne L. (Poaceae), Onobrychis viciifolia Scop. (Fabaceae), 

Plantago lanceolata L. (Plantaginaceae), Poterium sanguisorba L. (Rosaceae), and Trifolium 

repens L. (Fabaceae). Commercial seeds were purchased from seed suppliers ZYGENE and 

SCHEIER France.  

We established five communities differing by the identity of the first colonizer (i.e. five 

assembly types), but all getting all six species eventually. The final spatial arrangement of the 

communities was fixed by cardboards with holes used to proceed to community sowing, 

each hole corresponding to a seeding location. On March 6, we sowed 18 seeds per pot of 

either (1) D. glomerata (assembly type ‘Dactylisf’, with ‘f’ standing for ‘first’), (2) L. perenne 

(Loliumf), (3) O. viciifolia (Onobrychisf), or (4) T. repens (Trifoliumf). A fifth assembly type was 

added, which consisted in the simultaneous sowing of all individuals at full density (i.e. no 

priority; Synchronous; see Figure 4.1). Ungerminated seeds were replaced by individuals 

sown in separate pots on March 6 to ensure similar age and density of individuals. Four 

weeks after the first sowing (on April 3), we performed the second sowing for all 

communities except Synchronous by adding the rest of the species. Each pot contained 18 

individuals of each of the six species to achieve a final density of 108 seeds/pot (1200 

seeds/m²). Again, ungerminated seeds were replaced by individuals sown in separate pots 

on April 3. Twelve replicates per assembly type (Dactylisf, Loliumf, Onobrychisf, Trifoliumf, 

Synchronous) were established, totaling 60 pots. Pots were distributed in a randomized 

design and pots were randomized every two weeks. 
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5.2.3 | Data collection 

We harvested aboveground biomass three times during the experiment; three pots on April 

18 (i.e. week 6 after the first sowing) and June 13 (i.e. week 14), and six pots on September 2  

(i.e. week 26). For each pot, aboveground alive biomass (litter was not taken into account) 

was collected as close as possible to soil surface, sorted by species, dried at 60°C for 72h, 

and weighed (0.01g accuracy). We measured belowground biomass by collecting one soil 

core of 12 cm diameter × 16 cm deep at the center of each pot, isolating and washing the 

roots using a 250 µm mesh, and drying the sample at 60°C for 72h before the weigh. Because 

A. artemisiifolia (1) was sown at the same density 6 weeks after the establishment of the first 

native species, (2) had similar survival rates in all community types (Chapter 4), and (3) 

represented only 0.42%±0.05 (mean±SE) of final aboveground biomass of the communities 

(data not shown), we did not considered A. artemisiifolia in biomass analyses. 

Soil nitrogen (modified Kjeldhal method; NF ISO 11261, 1995), nitrates and ammonium (NF ISO 

14256-2, 2007), and available phosphorus (Dyer method; NF X31-160, 1999) were measured 

on soil samples collected at the end of the experiment (week 26). For this purpose, four soil 

cores (10 mm diameter × 100 mm deep) were collected per pot, totaling 24 samples per 

assembly type. Each sample was dried for 48h at 40°C and sieved (<2 mm) to remove roots 

and rocks. Control soil, i.e. soil before community establishment was also analyzed. Soil 

analyses were conducted following the standard French method AFNOR (Afnor 1994) and 

standard international method ISO and performed at the soil analysis laboratory Teyssier 

(Teyssier 2020). 

5.2.4 | Data analyses 

Priority advantage was calculated, for each species subjected to a priority treatment (i.e. D. 

glomerata, L. perenne, O. viciifolia and T. repens) and each harvest, as natural log response 

ratio (adapted from Dickson et al. 2012; Goldberg et al. 1999; Sarneel et al. 2016): 

Priority advantage = ln (
Biomass(if)

Biomass(isynch)
) 

where Biomass(if) is the biomass of the species i when it was sown first and Biomass(isynch )  is 

the biomass of the same species when it was sown simultaneously with other species 

(Synchronous). Positive values indicate that the species considered benefited from being 

sown first (i.e. Biomassf exceeding Biomasssynch). Negative values indicate that the species 

considered did not benefit from being sown first (i.e. was not disadvantaged from being sown 

simultaneously to others) and that Biomasssynch exceeded Biomassf. Null values indicate that 

Biomassf was equal to Biomasssynch.  

To visualize community trajectories over time, we ordinated the compositions of 

communities using non-metric multidimensional scaling (NMDS) based on aboveground 

biomass per species. We used data from three pots for weeks 6 and 14, and six pots for week 

26. To recompose community trajectories, we calculated mean scores values for each 



Chapter 5 – Experiment 2: Assembly History on Community Structuring 

118 

 

assembly type. The analysis was performed using the function ‘metaMDS’ in the ‘vegan’ 

package (Oksanen et al. 2007). 

We analyzed the effect of assembly type on total final aboveground biomass (six replicates 

per assembly type) using a Welch’s heteroscedastic F test with trimmed means and 

Winsorized variances (‘welch.test’ function in ‘onewaytests’ package; Dag et al. 2018; Welch 

1951), which is relatively insensitive to the combined effects of non-normality and 

heteroscedasticity (Keselman et al. 2008). When a significant effect was found, a post-hoc 

multiple pairwise comparison test was performed with a BH adjustment (‘paircomp’ function 

in ‘onewaytests’ package; Dag et al. 2018). The effect of assembly type on total final 

belowground biomass (three replicates per assembly type) was analyzed using a one-way 

ANOVA. When a significant effect was found, we performed pairwise comparisons on the 

least-squares means (LSM) with a Tukey adjustment (‘emmeans’ package; Lenth et al. 2019). 

We also calculated the contribution (in percent) of each species to total aboveground 

biomass for each of the three harvests. 

Analyses were performed using R software (ver. 3.6.2). P-values lower than 0.05 were 

considered as statistically significant. 

5.3 | Results 

All species benefited from priority sowing all over the experiment (i.e. positive priority 

advantage; Figure 5.1), except L. perenne in the first harvest. Trifolium repens, which 

benefited more in the first and the second harvest than other species, showed a very low 

benefit after 26 weeks. Priority advantage increased over time for D. glomerata and L. 

perenne, and was the highest for L. perenne at week 26. Onobrychis viciifolia, which 

increasingly benefited of priority after 6 and 14 weeks, was absent from the final harvest in 

both assembly types, so that priority advantage was null.  

  



Chapter 5 – Experiment 2: Assembly History on Community Structuring 

119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The NMDS ordination analysis (stress = 0.070) revealed an overall divergence of community 

trajectories (i.e. biomass composition) over time (Figure 5.2). Onobrychisf and Synchronous 

displayed close trajectories; the contribution of O. viciifolia to aboveground biomass at week 

6 was higher in Onobrychisf than in Synchronous, and decreased until no alive individuals 

subsisted at week 26 (Figure 5.3). Trifoliumf showed a closer trajectory to Onobrychisf and 

Synchronous than to the grass-priority communities. The trajectories of Loliumf and 

Dactylisf diverged over time, with Loliumf being the most divergent community after 26 

weeks. 

Figure 5.1 Priority advantage (natural log response ratio of the aboveground 

biomass of a considered species in priority treatment divided by its biomass in 

simultaneous sowing; mean±SE) for the four species considered for the three 

harvests (week 6, 14 and 26 after the first sowing). There were three replicates for 

week 6 and week 14, and six for week 26. 
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Figure 5.2 Trajectories of communities based on non-metric multi-dimensional scaling (NMDS) 

ordination of aboveground biomass sorted by species. The figure shows the two-dimensional 

solution exhibiting the least stress (0.070). Each community type is associated to a specific color. 

The trajectory of each community type is represented by circles linked by arrows. Circles refer 

to means of the NDMS axes for each harvest (6, 14 and 26 weeks after the first sowing). 

Replicates are depicted using squares (week 6), diamonds (week 14) and triangles (week 26). 
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Assembly type significantly affected total final aboveground biomass (Welch’s 

heteroscedastic F test; F=10.1, df=4, p<0.001) and total final belowground biomass (ANOVA; 

F=5.8, df=4, p=0.011). Synchronous showed a significantly higher total final aboveground 

biomass than Dactylisf (p=0.017) and Loliumf (p=0.001; Table 5.1). Loliumf had a significantly 

lower total final belowground biomass than Onobrychisf (p=0.032) and Trifoliumf (p=0.012; 

Table 5.1). 

 

A four-week time advance allowed D. glomerata, L. perenne and O. viciifolia to contribute 

respectively to 60.1%, 70.5% and 85.2%  to total aboveground biomass at week 6, while T. 

repens’s contribution was only of 23.1% (Figure 5.3). In Trifoliumf and Synchronous, O. 

viciifolia was the most represented species at week 6 with a contribution of 50.0% and 31.4%, 

respectively. Dactylis glomerata, L. perenne and T. repens contributions reached respectively 

82.7%, 86.9% and 81.2% at week 14 when benefiting from early sowing. O. viciifolia’s 

contribution drastically decreased in Onobrychisf to reach 11.4% at week 14, and was absent 

at week 26. Dactylis glomerata and L. perenne were the most contributing species in 

Synchronous at week 14, with 35.5% and 33.9%, respectively. After 26 weeks, T. repens 

contributed to more than 55% in all community assembly types except in Loliumf, where L. 

perenne contributed to 68.4%. 

  

 NO3-

(g/kg) 

NH4+ 

(g/kg) 

P2O5 

(g/kg) 

Total aboveground 

biomass (g) 

Total belowground 

biomass (g) 

Dactylisf 0.007 0.012 0.078 51.7±3.9a 6.1±0.2ab 

Loliumf 0.003 0.010 0.074 39.4±3.4a 7.3±0.8a 

Onobrychisf 0.005 0.012 0.076 58.7±7.7ab 4.6±0.6b 

Trifoliumf 0.010 0.015 0.070 80.5±12.3ab 4.1±0.5b 

Synchronous 0.008 0.010 0.083 79.1 ±4.1b 6.2± 0.4ab 

Table 5.1 Results of soil analyses and final above and belowground biomass (mean%±SE, n=6) 

recorded at the end of the experiment (week 26). Letters refer to post-hoc tests: assembly types 

with no letter in common are significantly different (p<0.05). 
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All communities showed lower nitrates and phosphorus soil contents than control soil, but 

higher ammonium content (Table 5.1). Among communities, Loliumf had the lowest nitrate 

content and mean total final aboveground biomass and Trifoliumf had the highest ones. Total 

final belowground biomass was higher in grass-priority communities than in legume-priority 

communities, with Loliumf showing the highest value and Trifoliumf the lowest. 

5.4 | Discussion 

Giving a four-week time advance to various species generated priority effects of varying 

strength (Figure 5.1) and affected community structuring and productivity (Figures 5.2, 5.3; 

Table 5.1). Time advance globally benefited to the species sown first by allowing them to 

produce more biomass than when sown simultaneously to the rest of the community (Figure 

5.1), with D. glomerata and L. perenne showing an increasing priority advantage over time. An 

early sowing of the two grass species led to diverging trajectories (Figure 5.2) most likely 

because strong priority effects impaired subsequent arriving species establishment and 

growth. This result is consistent with previous studies showing strong and persistent priority 

effects of grasses (Stuble & Young 2020; Werner et al. 2016) but we highlighted here 

differences between them. L. perenne benefited the most of an early sowing after 26 weeks 

(Figure 5.1). Loliumf, whose aboveground biomass was dominated by L. perenne by 68.8% 

(Figure 5.3), showed the highest belowground productivity and the lowest nitrate soil 

content (Table 5.1), and the lowest aboveground productivity (Table 5.1). Because L. perenne 

dominated aboveground biomass (Figure 5.3) and is known to form dense root systems 

(Frankow-Lindberg 2012), we can reasonably argue that the high belowground biomass and 

nitrate depletion was generated by L. perenne, although we were not able to separate roots 

by species. Therefore, these results suggest that an early sowing of L. perenne allowed this 

Figure 5.3 Species contribution to aboveground biomass (mean in percent) for each harvest (6, 14 

and 26 weeks after the first sowing). There were three replicates for week 6 and week 14, and six 

for week 26. 
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species to rapidly preempt belowground space and deplete soil nitrate, hindering 

subsequent species establishment and growth. Dactylis glomerata did not benefit as much of 

a time advance most likely because of a lower nitrate depletion and belowground 

productivity (Table 5.1). Overall, while we could expect that light preemption would mainly 

underlie priority effects in such plant communities newly established on fertile soil 

conditions  (Wilson & Tilman 1993), we highlight here that strong priority effects can arise 

from the preemption of soil resources and space. 

Several studies have shown that priority effects of legumes are weak and poorly persistent 

(Körner et al. 2008; von Gillhaussen et al. 2014; Weidlich et al. 2018), which has been 

attributed to a facilitative effect of early sown legumes to subsequent arriving species (von 

Gillhaussen et al. 2014) through direct nitrogen transfer or nitrogen sparing (i.e. legumes 

actively fixing atmospheric nitrogen display a smaller root system and leave more 

opportunities for neighbor species for root space and nutrient foraging; Chalk 1998). Here, 

the two legume species O. viciifolia and T. repens showed contrasting behaviors. T. repens 

did not benefited much of priority sowing after 26 weeks because this species was able to 

dominate the community without having a time advance (Figure 5.3), most likely because of 

its high aboveground biomass production. Onobrychis viciifolia, in contrast, was not able to 

persist whether it was sown in advance or simultaneously to other species, although it 

dominated aboveground biomass in the very early stages (Figure 5.3), reflecting weak 

competitive abilities. The greater ability of T. repens to produce and maintain a high 

aboveground biomass led to the convergence of Onobrychisf, Trifoliumf and Synchronous 

trajectories (Figure 5.2), with T. repens dominating the three communities after 26 weeks 

(Figure 5.3). 

5.5 | Conclusions 

Our results overall show that assembly history (i.e. timing of species arrival) interacts with 

deterministic processes (i.e. species-specific competitive abilities) to drive early community 

assembly. Species-specific differences occurred within functional groups. The strong 

competitive abilities of T. repens allowed this species to dominate the community without 

benefiting of a time advantage, while O. viciifolia presented too weak competitive ability to 

persist even when being sown four weeks before the rest of the species. In our experiment, 

priority effects were most likely driven by belowground competition, with L. perenne 

benefiting the most of an initial advantage thanks to its ability to preempt soil resources and 

space. This highlights the need to consider belowground competition as a potential driver of 

priority effects and early community structuring, although aboveground competition is most 

commonly monitored (Weidlich et al. 2018). This ability to preempt resources by developing 

a dense root system could be decisive in the longer term in community structuring, by 

preventing other species from establishing, in a positive (invasive species) or negative (local 

species) way. Depending on the objective, such species should or may not be included in 

seed mixes used in restoration work.  
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Synthesis of Chapter 5 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 in a nutshell 

Does the identity of the first native established species influence early recipient 

community structuring and priority effects? 

The identity of the first established species affected early community biomass and 
structure (i.e. species contribution to aboveground biomass), as well as soil nutrient 
content. Species-specific priority effects occurred, most likely driven by differences 
in belowground competition. 

Should we consider the order of native species arrival when implementing a 

priority effect-based revegetation strategy?  

When implementing a priority effect-based revegetation strategy, the order of native 
species arrival should be carefully considered since species-specific priority effects 
substantially influence community structuring, and could, by this way, affect early 
invasion resistance. 
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General Discussion 

 

Many research efforts are currently directed towards the understanding of the processes 

underlying invasion resistance (e.g. Beaury et al. 2019; Byun et al. 2018; Davies & Johnson 

2017; Walder et al. 2018; Zhang et al. 2018) and the design of invasion resistant plant 

communities (e.g. Byun et al. 2018; Drenovsky & James 2010; Yannelli et al. 2017). In this thesis, 

I investigated two main mechanisms that could contribute to early invasion resistance: (1) 

limiting similarity, predicting that two species sharing the same ecological niche are not able 

to coexist (Abrams 1983), and (2) priority effects, occurring when early-arriving species affect 

the establishment, growth or reproductive success of later-arriving species (Drake 1991; 

Helsen et al. 2016). In the first part of the discussion, I briefly discuss the suitability of both 

approaches based on literature review to improve revegetation strategies. In two 

greenhouse experiments, I manipulated priority effects of the recipient community and 

monitored the consequences on invasion resistance. The second part of the discussion 

relates the main findings in terms of research advances and application for the four 

investigated mechanisms: elapsed time between recipient community sowing and invasive 

species introduction (II.2.1), sowing density (II.2.2), species composition (II.2.3), and assembly 

history (i.e. the identity of the first native colonizing species and timing of recipient species 

establishment (synchronous or sequential sowing; II.2.4). The role of biomass production as 

an indicator of invasion resistance is discussed in a third part (II.3.1), with a focus on the 

particular case of nitrogen-fixing legumes (II.3.2). Then, perspectives on species selection 

for revegetation (II.4.1), consequences of priority effects on invasibility and community 

assembly in the long-term (II.4.2) and limits and perspectives of application (II.4.3) are 

reported in a fourth part.  

II.1 | Manipulating priority effects to design plant communities resisting 

early invasion appears more suitable than using limiting similarity 

A successful application of limiting similarity to design invasion-resistant communities faces 

several theoretical and practical issues, while, in contrast, the use of priority effects appears 

promising (Chapters 1 and 2). Limiting similarity derives from the niche concept, and 

assumes that species sharing the same ecological niche (i.e. having the same requirements 

to enable them to exist) will compete until one is be competitively excluded (Abrams 1983). 

The practical application of limiting similarity involves reassembling plant communities 

dominated by a species having a similar ecological niche to that of a target invasive species. 

This would require being able to accurately apprehend and measure plant species niche 

overlap, which is deeply complex. In contrast, priority effects rely on fitness differences, so 

that a time advantage will give a size-related competitive advantage to an early colonizer, 

equalizing or elevating its fitness relative to later colonizers (Chase 2010). We showed, 
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through theoretical and practical considerations, that the use of priority effects is more 

suitable than limiting similarity to the design of invasion-resistant plant communities (Table 

II.1). Our results are in line with the recent experimental study of (Yannelli Lucero et al. 2020); 

they found that giving to the recipient community a two-week time advance over invasives 

(i.e. priority effects) effectively decreased invasive species performance compared with a 

simultaneous sowing, while maximizing ecological similarity between invasive species and 

the recipient community (i.e. limiting similarity) did not increased invasion resistance. 

Table II.1 Manipulating priority effects appears more suitable than limiting similarity to design plant 

communities resisting early invasion. 

 Limiting similarity Priority effects 

Theoretical approach 

Measuring niche overlap and 
determining which degree of niche 
overlap between the invader and 
recipient species is necessary to 
competitively exclude the invader is 
too complex 

Easy to apprehend, i.e. time advance 
gives a size-related competitive 
advantage  to the first established 
species through fitness differences 

Timing 
May only act in the long-term, 
making this strategy inefficient for 
combatting early invasion 

High impact in early community 
structuring, potentially highly 
efficient for combatting early 
invasion  

Suitability to the most 
common situations  
i.e. several co-occurring 
invaders or no prior 
identification of potential 
invaders 

● Only applicable to target one 
invasive sp. or a group of sp. sharing 
the same niche 
● The target invasive sp. needs to be 
identified before revegetation 
planning 

● Can be effective against 
functionally different invaders at a 
time 
● Can be planned without a prior 
identification of the invader(s) 

Evidence in the literature 

Biased or no support 
 (Abella et al. 2012; Cleland et al. 2013; 
Emery 2007; Eriksson et al. 2006; 
Fargione et al. 2003; Funk & Wolf 
2016; Larson et al. 2013; Longo et al. 
2013; Oster & Eriksson 2012; Prieur-
Richard et al. 2000; Turnbull et al. 
2005; Von Holle 2005; Yannelli et al. 
2018; Yannelli Lucero et al. 2020) 

Support for efficiency  
(Delory, Weidlich, Kunz et al. 2019; 
Firn et al. 2010; Grman & Suding 
2010; Ulrich & Perkins 2014 ; Vaughn 
& Young 2015; Yannelli Lucero et al. 
2020; Young et al. 2016) 

 

II.2 | Manipulating priority effects to enhance early invasion resistance 

In two greenhouse experiments (Chapters 3, 4 and 5), I investigated the role of several 

aspects that are hypothesized to influence priority effects and associated invasion resistance 

via resource preemption: (1) elapsed time between recipient community sowing and invasive 

species introduction, (2) sowing density, (3) species composition, (4) the assembly history of 

the species composing the recipient community, i.e. timing of recipient species 

establishment (synchronous or sequential sowing) and identity of the first arriving species. 



General Discussion 

 

131 

 

II.2.1 | Increasing elapsed time between native community sowing and invasive 

species introduction enhances invasion resistance  

The size-related competitive advantage gained by the early colonizer is one of the main 

drivers of priority effects, equalizing or elevating its fitness relative to later colonizers 

(Wilsey et al. 2015). A time advance as short as few weeks can be efficient in reducing invasive 

species colonization success (Firn et al. 2010; Grman & Suding 2010; Ulrich & Perkins 2014; 

Vaughn & Young 2015; Yannelli Lucero et al. 2020; Young et al. 2016). Giving a greater head 

start to the recipient community over invasive species is expected to generate a greater size 

advantage and therefore, stronger priority effects leading to a lower invasive species 

establishment success. As expected, increasing time advance globally increased invasion 

resistance (one vs. 5 months of advance; Chapter 3), which is consistent with previous 

studies (De Meester et al. 2016; von Gillhaussen et al. 2014; Young et al. 2016). However, time 

advance interacted with biomass production. Low-productive communities composed by 

Lolium perenne did not benefited much of a greater time advance. This suggests that it is not 

the time advance per se, but rather the amount of biomass produced and the related amount 

of limiting resources pre-empted that determined the size of the competitive advantage 

given to the first established species and invasion resistance.  

 

II.2.2 | Increasing sowing density leads to mixed results 

The density of individuals in the recipient community (i.e. the number of individuals per 

surface unit) may influence priority effects because increasing the number of individuals is 

expected to enhance resource acquisition, leaving less resource available for subsequent 

colonizers (Gerhardt & Collinge 2007). Increasing density could be particularly efficient in 

reducing invasion in the early stages of community growth, since biomass and resource 

preemption tend to stabilize over time (i.e., density-dependent effects; Burton et al. 2006; 

Carter & Blair 2012; Crawley 2007; Nemec et al. 2013; von Gillhaussen et al. 2014; Yannelli et 

al. 2017). Increasing sowing density from 700 to nearly 3000 seeds/m² (four-time fold) had 

In terms of application 

Measures should be undertaken to give as much time as possible to the target community 

to establish and produce biomass before invasion. Several non-exclusive actions for 

improving native emergence speed and create priority over invasives can be considered: 

(1) limiting or ideally suppressing all sources of invasive species propagules and adult 

plants before revegetation, (2) actively reestablishing target native species as soon as 

possible after the disturbance, (3) carefully controlling invasive species in the initial 

weeks after revegetation, and (4) using ‘pre-germinating’ native species seeds. Adding 

fertilizers would however not be advisable to boost native species biomass production 

since it may favor fast-growing invasive species. 
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a limited effect on invasion resistance (Chapter 3). An effect of sowing density was only 

detected when Ambrosia artemisiifolia was introduced in one-month old communities 

composed of three or nine species (i.e. survival was lower with increased density). This weak 

impact could result from a rapid biomass stabilization of both high and low density 

communities, which may have been catalyzed by (1) the fertile and moist soil conditions in 

the experiment which may have favor a rapid community development (2) restrictive 

carrying capacity that may have occur due to pot conditions - but see Yannelli et al. (2017) 

where a ten-time increase in sowing density (1 to 10 g/m²) enhanced invasion resistance in 

a pot experiment. 

We could hypothesize that sowing density may be more determinant in field conditions, 

where less favorable conditions induce a slower development of communities, and where 

reaching carrying capacity takes longer (Carter & Blair 2012; Olsen et al. 2006). In this sense, 

Carter and Blair (2007) found in a field experiment that a lower cover of exotic species in 

high-density treatments (328-344 live seeds/m²) compared with low-density treatments 

(164-172 live seeds/m²). However, other field studies reported a weak density effect on 

invasibility (Nemec et al. 2013; Quinn & Holt 2009).  

Overall, these mixed results do not support that sowing density substantially influence 

priority effects and invasion resistance in newly established communities. 

 

II.2.3 | Species composition influences invasion resistance through biomass 

production 

The influence of species composition on invasion success has been explored since the 

premises of invasion ecology (Elton 1958). Species-rich communities have long been 

associated with increased invasion resistance at the local scale (e.g. Byun et al. 2013; Connolly 

et al. 2017; Dukes 2002; Fargione & Tilman 2005; Hector et al. 2001; Kennedy et al. 2002; 

Levine & D’Antonio 1999; Maron & Marler 2007; Naeem et al. 2000; Tilman 1997), because of 

their ability to use more resources and generate more biomass (Carpinelli 2000; Hector et 

In terms of application 

The minimum seeding rate required to ensure a sufficient development of the target 

community depends on the ability of selected species to preempt space and other 

resources, intrinsic germination capacity and environmental conditions encountered for 

germination and seedling development (notably resource availability and carrying 

capacity). Maximizing sowing density does not necessarily lead to a greater plant cover 

(due to density-dependent mortality), and would increase revegetation cost. For these 

reasons, predicting which sowing density needs to be applied in a particular revegetation 

context appears complex. Performing small-scale tests in situ before applying large-scale 

revegetation would help to determine an adequate sowing density. 
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al. 1999; Nyfeler et al. 2009; Tilman 1999; Tilman et al. 2001). Diversity-resistance has been 

attributed to (1) a greater likelihood of including particularly competitive resident species or 

functional groups (i.e. identity or sampling effect; Crawley et al. 1999; Huston 1997; Wardle 

2001), (2) increased complementary resource use among species (i.e. complementarity 

effect; Lavorel et al. 1999; Maron & Marler 2007; Robinson et al. 1995), or both these factors 

(Cardinale et al. 2007; Fargione & Tilman 2005). However, because it takes several growing 

seasons for complementary effects to cause overyielding (Cardinale et al. 2007), species 

composition, i.e. the presence of competitive species (identity effect) might be determinant 

in early invasion resistance of diverse communities, i.e. through greater resource 

preemption and increased biomass production. 

Species composition strongly affected invasive species survival, with three-species and 

nine-species recipient communities both showing a higher invasion resistance than one-

species communities (Chapter 3). The increased resistance of polycultures was most likely 

related to the three to four time higher final aboveground biomass production than 

monocultures, and seemed unaffected by species richness or species identity of the 

dominant species (T. repens dominated three-species communities, while L. corniculatus 

dominated nine-species communities). These results support that the introduction of 

productive species in the recipient community may boost invasion resistance through an 

overall increase in aboveground biomass production (see II.3 for biomass discussion). 

  

In terms of application 

Attention must be paid on carefully selecting productive species that are able to develop 

well on site conditions and preempt soil resources. Although a high diversity may not 

reinforce early invasion resistance, selecting several species increases the probability to 

include species that are able to develop well in a particular context. In addition, in the 

longer term, diverse communities may be more resistant than poorly diverse ones due to 

complementarity effects and reduced resource fluctuations and biomass over time. 

Hence, applying seed mixes with a certain number of species may be safer and more 

efficient in the long-term than relying in the ability of a few species to develop a dense 

and efficient cover in a particular context. In addition, the use of native local species 

(which are expected to be adapted to local conditions and develop better than non-local 

species) may contribute to a greater establishment success of the target community and 

therefore be more resistant to invasion. 
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II.2.4 | Altering assembly history and the identity of the first colonizer affected 

invasion resistance 

Studies investigating the influence of native species’ order and timing of arrival on 

subsequent invasion success are scarce (Mason et al. 2013). Hence, in addition to the 

theoretical knowledge that such experiment may bring to community ecology, it is of direct 

interest to practitioners since sequential sowing is currently considered to increase the 

establishment  success of target species in restoration (Young et al. 2016).  

In our greenhouse experiment (Chapters 4 and 5), small differences in assembly history 

altered community structure (i.e. the identity of the dominant species; Körner et al. 2008; 

Weidlich et al. 2018), biomass production (Körner et al. 2008; von Gillhaussen et al. 2014; 

Weidlich et al. 2016, 2018), soil chemistry, and invasion resistance (Lang et al. 2017; Young et 

al. 2016). Giving a four-week time advance generally allowed the generation of priority 

effects (early sown species produced more biomass than when sown simultaneously to the 

rest of the species), but species-specific differences occurred (Chapter 5). These results 

indicate that deterministic processes (species-specific competitive abilities) interact with 

temporal colonization dynamics to drive early community assembly and invasion resistance. 

Consequences of sequential sowing on biomass production and nitrate preemption 

impacted invasion resistance (Chapter 4). A synchronous sowing of the whole community 

led to the highest invasion resistance most likely because of a quick biomass production and 

associated high resource preemption, which is consistent with studies associating high 

biomass production to a greater invasion resistance (Lulow 2006; Mason et al. 2013, 2017; 

Rinella et al. 2007; Symstad 2000). Communities where the grass species L. perenne was sown 

first were more resistant than communities where priority was given to the legume T. repens. 

Difference in invasion resistance was most likely related to the preemption of belowground 

resources and space; an early sowing of L. perenne allowed this species to rapidly dominate 

the community and quickly preempt soil resources and space which were therefore no 

longer available for subsequent colonizing invaders, while introducing T. repens first led to a 

lower belowground biomass production and high soil nitrate content, boosting invasion.  

  

In terms of application 

Giving a time priority to certain species did not increase invasion resistance compared 

with the synchronous sowing of all species, although some early sown species induced a 

higher belowground (L. perenne) or aboveground biomass production (T. repens) after a 

few weeks. Accordingly, our results do not support that sequential sowing is a potential 

way to increase invasion resistance of communities established after a disturbance, and 

could even increase vulnerability to invasion.  Applying sequential sowing may therefore 

not be recommended on invaded site. 
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II.3 | Biomass production as an indicator of invasion resistance 

II.3.1 | Aboveground and belowground biomass production affects early 

invasion resistance 

High biomass production has been repeatedly associated with increased invasion resistance 

(Lulow 2006; Mason et al. 2013, 2017; Rinella et al. 2007; Symstad 2000; Yannelli Lucero et al. 

2020). Biomass production is an indicator of competitive ability (Gaudet & Keddy 1988), and 

high biomass can reflect a high consumption of available resources such as light, water or 

nutrients. Our findings provide support for a major role of biomass production in early 

invasion resistance at least in the initial stages (Chapters 3 and 4). 

In the early stages of community growth, a high aboveground biomass production is 

expected to increase competition for light and therefore may be determinant for invasion 

resistance following disturbances and vegetation clearance (Baruch et al. 2000; Corbin & 

D’Antonio 2004; D’Antonio et al. 2001; Forrest Meekins & McCarthy 2001; Vitousek & Walker 

1987). The most resistant communities were those that produced high aboveground (Chapter 

3) or total (Chapter 4) biomass, despite a final dominance of legumes (whose presence was 

often associated with greater invasion success; Mwangi et al. 2007; Scherber et al. 2006). 

These results agree with Rinella et al. (2007), where overall productivity mattered whereas 

species identity did not.  

Belowground biomass production can also play a determinant role in early invasion 

resistance. The findings of the second experiment support that a high belowground biomass 

production and preemption of soil resources (here, mostly nitrate) in the very early stages 

can substantially affect early invasion resistance (Chapter 4). The highly resistant community 

where L. perenne was sown first, showed a high belowground biomass production and a high 

nitrate preemption while displaying the lowest final aboveground biomass production (and 

total biomass). Moreover, communities where T. repens was sown first were the least 

resistant to invasion, although rapidly reaching a high aboveground biomass. The low 

resistance was most likely due to of an initial lower competition for root space and higher 

belowground resources arising from the dominance of T. repens. 

Overall, our results underline that a quick, high biomass production and preemption of soil 

resources play a significant role in early invasion resistance. They also provide evidence that 

strong priority effects can arise from belowground competition in the early stages of 

community establishment (Weidlich et al. 2018).  

II.3.2 | The case of nitrogen-fixing species 

Legumes can help developing a greater vegetation cover and decrease invasive species 

survival (most likely through competition for light; Chapter 3), but can also boost invasive 

species performance especially when benefiting from a head start (Chapter 4). Legumes may 

also particularly favor invasion when established in environments with limited resources 

and/or stressful conditions, because legumes may enrich soil with nitrogen and turn 
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conditions and favor weedy, fast-growing invasive species (Dornbusch et al. 2018; Maron & 

Connors 1996). Therefore, when (1) invasion risk is high and immediate, and (2) soil resources 

are limited and/or in stressful conditions, including early emerging and/or productive 

legumes in seed mixes should be avoided. 

II.4 | Perspectives 

II.4.1 | Species selection for revegetation 

A functional trait approach to select adequate species 

Broad functional groups (i.e. grasses, legumes and non-legume forbs) do not appear to be 

good indicators of priority effects strength and invasion resistance (Chapters 3, 4 and 5). 

Species presenting an ability to rapidly produce high biomass and capture soil resources 

contributed to invasion resistance. In this sense, results of Zuo et al. (2016) indicate that a 

high root:shoot ratio and high competitive abilities allow greater priority effects. Searching 

for particular functional traits associated to high growth rate and high resource capture may 

be more relevant than focusing on functional groups (Drenovsky & James 2010), especially 

since Violle et al. (2009) demonstrated that instantaneous measures of plant traits are good 

indicators of resource depletion over time. Drenovsky and James (2010) showed that SLA 

(Specific Leaf Area; leaf area produced per unit biomass invested in leaf) is a very good 

predictor of plant growth and resource capture rates (i.e. high SLA associated to higher 

growth rate and resource use), and could therefore be a key trait to look at for species 

selection.  

It should however be noticed that traits that matter to invasion resistance may vary 

depending on site conditions. For instance, in nutrient-limited systems, selecting species 

presenting a high nutrient use efficiency (i.e. a great ability to detect areas where nutrients 

are located and to use these nutrients efficiently in photosynthesis) may be more relevant 

than focusing on SLA (Drenovsky & James 2010). Further research efforts on identifying traits 

associated to strong priority effects and invasion resistance depending on the biotic (e.g. 

presence of herbivores) or abiotic (e.g. resource availability) context would help design more 

resistant communities. 

Perennial vs. annual species 

In our experiments, we used perennial species to compose the recipient native communities. 

Perennial species are expected to grow larger in each successive year after sowing, 

maintaining or increasing the preempted resources, therefore exerting an increasing 

priority advantage and invasion resistance over time (Corbin & D’Antonio 2004; Dyer & Rice 

1999; Lulow 2006; Morghan & Rice 2006). Using perennial species appears therefore relevant 

to allow a long-term persistence of an initial sowing advantage. Annual species however 

often present a higher competitive ability at the establishment stage than perennials 

(Bartolome & Gemmill 1981; Dyer & Rice 1997; Hamilton et al. 1999; Young et al. 2015), and 

could therefore rapidly preempt a large amount of resources and exert strong priority 
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effects against invaders. In this sense, Herron (2010) found that including annuals in 

revegetation mixes may present some advantage when target sites are invaded by fast-

growing, competitive invasive species. However, whether annual native species could 

perpetuate their initial advantage over several generations (i.e. increasing population density 

through a greater reproductive success) has not been experimentally studied yet.  

II.4.2 | Consequences of priority effects on community assembly and invasibility 

in the long-term 

This thesis work focused on invasion resistance and priority effects in the very early stages 

of community growth to target the post-disturbance stage particularly vulnerable to 

invasion, considering competitive interactions and processes occurring over one growing 

season.  

While long-term studies are rare, there is a few experimental evidence that priority effects 

can have long-lasting consequences on invasibility and community structure. Vaughn and 

Young (2015) showed that giving a two-week time advance to native species favored those 

species over invasives for four years. Werner et al. (2016) found that benefits of temporal 

priority persisted for eight years in a grassland experiment. Moreover, Švamberková et al. 

(2019) detected an effect of initial species composition on community structure 20 years 

after sowing. These studies support that order and timing of species immigration during 

community assembly may influence long-term community structure and may lead to 

alternative stables states – implying that several final states of species composition can 

occur depending on immigration history even under similar environmental conditions and 

species pool (Fukami & Nakajima 2011). A significant impact of species colonization history to 

long-term community structure would have deep implications for understanding, 

conserving and restoring species diversity. For instance, restoring specific sequences of 

species arrival may be required to favor certain target species over undesirable ones (Young 

et al. 2016). Quantifying to which extent priority effects are influencing community structure 

is challenging since immigration history is impossible to reconstruct in sufficient detail for 

most natural communities. Restoration contexts appear therefore particularly suitable to the 

study of such historical factors since species order of arrival can be monitored and 

experimental manipulations of immigration history can be implemented. 

II.4.3 | Limits and perspectives of application  

Priority effect direction and strength are context-dependent 

Predicting the efficiency of priority effects in revegetation strategies in a particular context 

is challenging, because the direction (positive or negative) and strength of priority effects 

are strongly dependent on the interacting species as well as on environmental conditions. 
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 Influence of the characteristics of first arriving species and later colonizers 

Several studies underline that the identity of the first arriving species influence the direction, 

strength and persistence of priority effects (Cleland et al. 2015; Delory, Weidlich, Kunz et al. 

2019; Dickson et al. 2012; Stuble & Souza 2016; Werner et al. 2016; Young et al. 2016; Zuo et 

al. 2016). Werner et al. (2016) highlighted differences at the functional group level, with 

grasses exerting strong and persistent priority effects over forbs, while forbs over grasses 

did not. Stuble and Souza (2016) found that species origin influenced priority effect strength, 

with late arrival being less detrimental to exotic than native species. Zuo et al. (2016) showed 

that species displaying a high root:shoot ratio and greater competitive ability are more likely 

to generate strong priority effects. We also highlighted species-specific differences in 

priority effect strength, with species quickly preempting nitrate and producing a high 

belowground biomass generating stronger priority effects (Chapter 5).  

However, priority effects may also depend on the characteristics of later colonizers. The 

three invasive species tested, Ambrosia artemisiifolia, Bothriochloa barbinodis and Cortaderia 

selloana shared some response patterns to manipulation of priority effects but displayed 

some species-specific differences (Chapter 3). For instance, the presence of a one-month 

community tended to facilitate C. selloana seedling emergence while it was deleterious to A. 

artemisiifolia’s ones. The apparent facilitation of C. selloana seedling emergence could be 

related to its ecological requirements for germination and early seedling development (i.e. a 

one-month vegetation cover may have generated better conditions than bare soil by 

retaining humidity and providing adequate shade conditions; Domenech 2005; Holmgren et 

al. 1997). Importantly, weaker priority effects can be observed when later colonizers are able 

to tolerate low concentrations of resources (occurring when colonizers established earlier 

already preempt resources) and high levels of competition (Stuble & Souza 2016), so that they 

are less impacted by arriving late. Accordingly, invasive species tolerating higher 

competition levels and lower resource availability may be less sensitive to priority effect-

based strategies than ruderal, invasive species establishing in disturbed environments. 

 Influence of environmental conditions 

Priority effect strength depends in part upon whether site conditions allow for early 

colonizing species survival, rapid growth and resource preemption (Fukami 2015). Site 

conditions include resource availability but also biotic components such as the presence of 

herbivores and pathogens. Priority effects are expected to be stronger under high resource 

availability and favorable conditions which tend to accentuate competitive interactions 

(Chase 2003; Collinge & Ray 2009; Fukami 2015; Kardol et al. 2013; Young et al. 2016). In this 

sense, Young et al. (2016) found priority effects to be weaker in the least productive site and 

when initial sowing occurred during years with relatively less rainfall and lower cover 

production. Moreover, the study of Kardol et al. (2013) indicated greater priority effects 

under a high nutrient supply that allowed early arriving species to preempt light more 

quickly, therefore decreasing the successful establishment of subsequent arriving species. 

Biotic components of the environment can also influence the strength of priority effects. 
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Notably, when herbivory pressure is high, priority effects of early-established species can be 

limited because early emergence increases their vulnerability to herbivores (Wainwright et 

al. 2012). 

Although the level of efficiency of priority effect-based strategies appears context-

dependent, there is growing evidence that it could substantially help decreasing plant 

invasion across many systems and species (Firn et al. 2010; Grman & Suding 2010; Vaughn & 

Young 2015; Yannelli Lucero et al. 2020; Young et al. 2016). Hence, developing priority effect-

based strategies appears promising and should be further explored. To improve the 

predictability of such revegetation strategies, research is needed to better characterize the 

influence of abiotic (e.g. resource availability, temperature, rainfall) and biotic (e.g. 

characteristics or traits of interacting species, and influence of other organisms such as 

herbivores, soil biota, symbionts and pathogens) attributes of the environment.  

Situations where priority effect-based revegetation strategies appear unsuitable 

There are several contexts where priority effect-based revegetation strategies appear 

inappropriate to control plant invasions. 

 In harsh environments 

The use of revegetation and priority effects as a way to reduce plant invasions relies on the 

assumption that competitive interactions are the dominant forces structuring the 

community. According to the ‘stress-gradient hypothesis’ (Bertness & Callaway 1994), this 

occurs when the physical environment is relatively benign (fertile and relatively stable 

conditions) and consumer pressure is low. However, in harsh environments with limited 

resources and/or stressful conditions, facilitative interactions are expected to prevail so 

that revegetation may facilitate invasive species establishment rather than preventing it 

(Cavieres et al. 2005; Lenz & Facelli 2003; Mason et al. 2013). In these cases, actively restoring 

a native cover has to be considered carefully. 

 In environments subjected to frequent disturbances 

A priority effect-based revegetation strategy is unsuccessful in environments subjected to 

frequent disturbances involving a severe destruction of the vegetation cover. Disturbances 

disrupt the priority effects of well-established resident species, reducing resource uptake 

and creating opportunities for invaders to establish (D’Antonio et al. 1999; Davis et al. 2000). 

For instance, applying a priority effect-based revegetation strategy appears inappropriate in 

riverbanks prone to frequent flooding or in sites exposed to severe trampling. 

 In environments with a large invasive species propagule bank 

In order to benefit from priority effects, native species must gain a sufficient time advantage 

over invasive species. Therefore, it is mandatory to remove invaders (present as adult plants 

or propagules) before revegetation. Restoring a native cover by seeding may be poorly 

efficient against resprouting of rhizome propagules, since the latter establish generally more 
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successfully than seeds regardless of the presence of a disturbance or competition from 

resident plants, because rhizomes possess better reserves than seeds (Silvertown 2008; 

Winkler & Fischer 2002). Several methods are available for eliminating invasive species 

propagules, such as topsoil removal (Hölzel & Otte 2004), effective mowing management (i.e. 

adjusted to phenological development; Milakovic et al. 2014) and artificial flushing of invasive 

species to induce germination, followed by lethal interventions such as tillage or herbicide 

application (Wolf & Young 2016). Alternative approaches, such as microwave soil heating are 

also currently considered to eliminate invasive species seed banks (Hess et al. 2018; Hess, 

Buisson, Mesléard 2019). However, in cases where invasive species propagules bank cannot 

be removed before applying revegetation because of practical (e.g. deep soil disturbances 

unwanted, presence of protected native species) or financial reasons, implementation of a 

priority-based strategy appears unlikely to be successful.  

 In highly variable environments 

Using priority effect-based revegetation strategies is challenging in highly variable 

environments (such as ecosystem under Mediterranean climate presenting a high inter-

annual variability in temperature and rainfall; see Appendix 1), since the outcome is strongly 

dependent on specific years and environmental conditions (Stuble et al. 2017). Environments 

where environmental conditions are more predictable could me more suited to the 

implementation of priority effect-based revegetation strategies.
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Conclusions 

 

The global increase in invasions and associated disastrous consequences require rapid 

solutions to reduce invasive species spread. This thesis combines literature synthesis with 

greenhouse experiments in order to move towards a better understanding of invasion 

resistance of newly established communities and develop improved revegetation strategies 

against plant invasions. Two main concepts were explored, which were limiting similarity 

and priority effects. We provide evidence that limiting similarity is likely to play a limited role 

in early invasion and that its application appears unsuitable to the design of invasion 

resistant communities. Managing priority effects (i.e. reducing invasive species ones and 

enhancing those of natives) appears much more promising. The two greenhouse 

experiments highlighted how temporal assembly dynamics (i.e. elapsed time between 

recipient community sowing and invasive species introduction; timing of recipient species 

arrival) interacts with community characteristics (i.e. composition, density, species identity) 

to generate priority effects of variable strength and substantially affect early invasion 

resistance. Strong priority effects and early invasion resistance were associated to a quick, 

high production of biomass and a high preemption of soil nitrogen. According to the results, 

(1) giving as much time advance as possible to the recipient community over invasives, (2) 

including species displaying an ability to rapidly produce biomass and preempt soil 

resources and (3) avoiding sequential sowing especially when early colonizers are nitrogen-

fixing, productive species. 

Overall, this thesis brings new knowledge on early invasion resistance of newly established 

herbaceous plant communities. The results, highlighting the inadequacy of revegetation 

strategies based on limiting similarity and the promising perspectives of manipulating 

priority effects, will help designing more efficient revegetation strategies against plant 

invasions.
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Appendix 1 

 

A | Study aims 

An in-situ experiment was set up early 2019 addressing a similar research question to the 

greenhouse experiment reported in Chapter 3, to find out: How do invasion timing (i.e. 

elapsed time between recipient community sowing and invasive species introduction), 

recipient community composition and sowing density interact to influence priority effects 

and early invasion success of communities sown after a disturbance? 

Experiments in controlled conditions make it possible to neutralize the effect of some 

uncontrollable factors influencing vegetation responses in the field (e.g. variability in 

precipitations, heterogeneity in soil nutrient content, herbivory), allowing the study of 

specific mechanisms. Controlled experiments are particularly adapted to study the influence 

of assembly history since precisely monitoring species immigration in a field context is 

challenging. Nevertheless, implementing a field experiment appeared particularly relevant 

within the framework of this thesis, which aims to apply the demonstrated principles to the 

development of more efficient revegetation practices against plant invasions. Environmental 

conditions encountered in the field (1) are expected to be less favorable to the establishment 

and growth of sown communities than the greenhouse conditions in Chapter 3 (i.e. frequent 

watering, fertile topsoil, no competition with unsown species, no herbivory or seed 

predation), (2) and imply potential interactions with unsown plant species and other trophic 

levels, both being likely to affect vegetation dynamics and invasibility. Pot and field 

conditions also differ in carrying capacity (i.e. limited pot capacity can be restricting for root 

growth), which would also contribute to response differences.  

This experiment also aimed at testing whether site conditions and the identity of the species 

used for revegetation influenced invasibility of sown communities, with the assumption that 

resident species better adapted to site conditions would generate stronger priority effects 

and better resist invasion. For this purpose, the same experimental design was implemented 

on two sites in Southeastern France (‘TDV’ and ‘PSJ’ sites) differing by soil conditions 

(respectively clay loam vs. sandy texture), and two sets of species were tested, each one 

being composed of species adapted to clayish (A) or sandy soils (B). We expected a greater 

establishment success and lower invasibility of (1) the species set (A) in the TDV experiment, 

and (2) the species set (B) in the PSJ experiment.  

The dramatic development of the weedy species Chenopodium album from the natural seed 

bank in the PSJ site led to the abandonment of the experimental site. On the TDV site, the 

introduced invasive species did not emerged in the first two growing seasons, so that we 

were not able to test our research question. This Appendix aims at presenting the 

experimental protocol and synthesizing the results obtained on native communities.  
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B | Methods 

B.1 | Experimental sites 

Location 

The experiment was carried out on two sites distant by 34 km, located on the domain of Tour 

du Valat (clay loam soil texture; hereafter ‘TDV’; 43°30'06.2"N 4°41'30.7"E, Arles, France), and 

the domain of Petit-Saint-Jean (sandy soil texture; hereafter ‘PSJ’; 43°34'24.9"N 4°16'52.6"E, 

Saint-Laurent-d’Aigouze, France) in South-Eastern France. The sites were subjected to a 

Mediterranean climate, having warm and hot, dry summers and mild wet winters with a high 

interannual variability (Lionello et al. 2006). Before implementing the experiments, both sites 

were hay meadow that have not been ploughed for several years.  

Sites preparation and maintenance 

The PSJ site was first ploughed in November 2018, sown with mustard to prevent wind 

erosion during winter and plowed again at the end of January 2019, a few days before sowing. 

The TDV site was ploughed once in late January 2019 (Figure A.1A). To provide a uniform and 

favorable seedbed, each sown plot (see B.3) was cleared of large clods and residual (generally 

sparse) vegetation, and flattened by hand (Figure A.1B). 

  

 

 

 

 

 

 

 

 

 

 

On the TDV site, three unsown taxa invaded the plots after plowing, which were 

Helminthotheca echioides L., Polygonum aviculare L. and thistles (mostly Cirsium sp.) In order 

to reduce competition from these species with the sown communities, the largest 

individuals were removed by hand in mid-April and early July, 2019. 

Figure A.1 Site preparation. (A) TDV site after plowing, and (B) preparation of sown plots at the PSJ site. 

A 

B 
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B.2 | Species selection 

Native species selected for sowing 

Species composing the sown communities were selected on the basis that (1) their ecological 

requirements matched climate and soil conditions of one site (clay loam or sandy soils) (2) 

their seeds were commercially available and used in revegetation in France (NGE internal 

investigation, data not shown). Seeds were purchased at the commercial seed supplier 

SCHEIER France. Before starting the experiment, we assessed germination capacity by 

placing 50 seeds (five replicates of ten seeds) in Petri dishes on cotton soaked with distilled 

water. Petri dishes were placed in a growth chamber (Hotcold-GL: 12K lux; P-Selecta, 

Barcelona, Spain) with a photoperiod of 12 hr / 12hr and alternating temperature (15/25°C), 

and germination was recorded every three days for one month. The results were used to 

adjust the number of seeds sown in the experiment, to ensure germination rates equivalent 

to the expected final densities.  

Invasive species  

Introducing invasive species to a free site poses obvious ethical problems. For this reason, 

we selected invasive species present on site or nearby. Accordingly, we selected two invasive 

species (i.e. Bothriochloa barbinodis (Lag.) Herter and Cortaderia selloana (Schult. & Shult.f.) 

Asch. & Graebn.) to introduce in the TDV site and three (Ambrosia psilostachya DC., 

Bothriochloa barbinodis, and Cortaderia selloana) in the PSJ site. As to prevent the spread of 

introduced invasive species, we aimed at removing emerging individuals before flowering 

throughout the experiment. 

The western ragweed (Ambrosia psilostachya DC., Asteraceae) is a perennial species native 

to North America (Fried et al. 2015). Introduced in France in the 19th century, this clonal 

species colonizes ruderal and cultivated environments particularly abundant in the start of 

succession. Dense populations have been observed in certain sensitive or degraded 

Mediterranean areas, potentially threating native biodiversity. Descriptions of B. barbinodis 

and C. selloana are available in Chapter 3.  

For each invasive species, seeds were harvested at maturity in 2018 from at least ten 

individuals from three populations located in South-Eastern France. Before starting the 

experiment, seeds of A. psilostachya were cold-stratified to break dormancy (Montagnani et 

al. 2017). For this purpose, we placed seeds between two cotton layers soaked in distilled 

water in a hermetically sealed plastic box covered with light-tight aluminum and refrigerated 

it at 4°C for seven weeks (Bae et al. 2017). 

Prior to the experiment, germination capacity of each species was evaluated according to 

the protocol described above. Test results were used to adjust the number of seeds sown as 

to ensure germination rates equivalent to expected densities.  
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B.3 | Experimental design 

The aim of the experiment was to evaluate whether (1) elapsed time between recipient 

community sowing and invasive species introduction (0, 2, 4 months), (2) seeding density 

(1800 or 6000 live seeds/m²), and (3) species composition (Table A1) influenced invasion 

resistance of sown communities in field conditions. Species were sown in equal proportions.  

Table A.1 Description of native sown communities. 

 
Richness Species 

Total seeding 
density 

(live seeds/m²) 

Community 
type 

 
Set of sp. (A) 

‘Clay-adapted’ 

1 sp. Lolium perenne L. 
1800 A-1SP-D1 

6000 A-1SP-D2 

3 sp. 
Lolium perenne L. 
Plantago lanceolata L.  
Trifolium repens L. 

1800 A-3SP-D1 

6000 A-3SP-D2 

9 sp. 

Achillea millefolium L. 
Dactylis glomerata L. 
Lolium perenne L. 
Lotus corniculatus L. 
Onobrychis viciifolia Scop. 
Plantago lanceolata L.  
Poterium sanguisorba L. 
Schedonorus arundinaceus 
(Schreb.) Dumort. 
Trifolium repens L.  

1800 A-9SP-D1 

6000 A-9SP-D2 

Set of sp. (B) 
‘Sand-

adapted’ 

1 sp. Elytrigia repens L. 
1800 B-1SP-D1 

6000 B-1SP-D2 

3 sp. 
Elytrigia repens L. 
Plantago coronopus L. 
Trifolium pratense L. 

1800 B-3SP-D1 

6000 B-3SP-D2 

9 sp. 

Anthyllis vulneraria L. 
Cynodon dactylon L. 
Elymus repens L. 
Festuca rubra L. 
Helichrysum stoechas L. 
Medicago sativa L. 
Plantago coronopus L. 
Silene latifolia subsp. alba 
(Mill.) Greuter & Burdet 
Trifolium pratense L. 

1800 B-9SP-D1 

6000 B-9SP-D2 

Control No seeding CONTROL 
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On January 18, 2019 (TDV) and January 25, 2020 (PSJ), each community type (composition × 

density; Table A1) was sown by hand on plots of 24 m² (6 × 4 m²), with five replicates per 

community type (Figure A.2A). As to disentangle the effect of sown and unsown species, five 

control plots where added to the experiment where no recipient community was sown, 

totaling 65 plots per site. Treatments were implemented according to a systematic 

arrangement plan (Figure A.3).  Plots were separated by at least 3 m. 

 

  

  

A 

B

B 

C

B

D

B

Figure A.2 Native community sowing and invasive species introduction. (A) Native community sowing 

by hand, Installation of colored sticks signaling invasive species seed introduction in the (B) TDV and 

(C) PSJ sites. (D) Invasive species seed introduction. 
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Figure A.3 Spatial arrangement of the experiment. In each plot is indicated, from left to 

wright: (1) the absolute number of the plot preceded by ‘P’, (2) the set of recipient species 

(A) or (B), species richness (1SP = one species, 3SP = three species and 9SP = nine species), 

seeding density (D1 = 1800 seeds/m² and D2 = 6000 seeds/m²), and (3) the spatial 

arrangement of the three double-lines of invasive species seed introduction  

(1=simultaneously to the recipient communities, 2= two months later, 3 = four months 

later). Control plots refer to absence of native species seeding. 
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In each plot, invasive species seeds were introduced by hand at fixed positions marked with 

colored sticks (Figure A.2B,D). Three double-lines were set up to test the three introduction 

times (i.e. simultaneous to community sowing, two months, and four months later; Figure 

A.4). To avoid bias related to the position in the plot, the spatial position of introduction 

times were randomized according to a systematic arrangement plan (Figure A.3). For each 

introduction time, we aimed at monitoring invasive species response on min. 50 individuals 

(ten per replicate). According to the results of germination tests realized before the 

experiment (data not shown), we introduced either 15 (A. psilostachya), 14 (B. barbinodis) or 

13 (C. selloana) seeds for each introduction time in each replicate (Figure A.4).  

Seed positions were distant by 20 m. 

 

 

 

 

 

 

Figure A.4 Spatial arrangement of invasive species seed introduction. In each plot, seed 

introduction was planned on three double lines (T1, T2 and T3) corresponding to the 

three introduction times (0, 2 or 4 months after native community sowing). Position of 

the three 25 × 25 cm quadrats used for aboveground biomass harvest is indicated by 

grey squares with numbers (1: July 2019, 2: November 2019, 3: June 2020).  Invasive 

species seeds arrangement per double-line is indicated for the PSJ and TDV sites using a 

different grey shade for each species. Positions where seeds were introduced are 

represented by black dots. 
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What was done 

The first invasive species seed introduction was performed simultaneously to community 

sowing (late January). The second introduction, initially planned for late March, was delayed 

until April 29-30 due to a very poor vegetation development attributed to particularly dry 

conditions in the region in early spring 2019 (Météo France 2020). The third introduction 

was not carried out due to the delay. 

In each site, four additional plots of 72 m² (12 m × 6 m) were sown using a hydroseeder 

prototype (SCHEIER ECO 500) as to investigate the influence of sowing practice on 

community development and invasibility (Figure A.5). Hydroseeding is a common practice 

for revegetating large and steep areas (Albaladejo Montoro et al. 2000; Tormo et al. 2007), 

which consists in projecting seeds mixed with water, fertilizers and sometimes other 

substances aiming at improving soil properties and increase vegetation establishment 

success. Here, the hydroseeding mix only consisted in seeds and water. Four treatments 

were tested, which were: A–1SP–D1, A–1SP–D2, A–9SP–D1, A–9SP–D2. In each plot, we aimed 

at establishing three × three double-lines of invasive species, as to investigate the response 

of at least 30 individuals of each invasive species per treatment.  

 

  

Figure A.5. Hydroseeding of the native communities in the TDV site. 
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B.4 | Soil analyses  

In order to assess potential in-site variability in soil characteristics, sites were divided in four 

equal zones of 0.182 ha in which ten soil cores (7 mm diameter × 150 mm deep) were 

collected. Samples extracted from each zone were pooled and analyzed for granulometry 

and chemistry (pH, total organic matter, total C, N and Ca, nitrates (NO3
-), ammonium (NH4

+), 

phosphorus pentoxide (P205), potassium oxide (K2O), magnesium oxide (MgO), and calcium 

oxide (CaO). Soil analyses were performed by the professional soil laboratory Teyssier 

(Teyssier 2020).  

B.5 | Invasive species success 

In order to measure early invasion success, we planned to monitor the number of emerged 

individuals of invasive species four times in the first year, and three times in the second year. 

To measure invasive species performance, we intended to measure final biomass at the end 

of the second growing season.  

What was done 

We monitored invasive species seedling emergence in the TDV experiment on June 26, 2019. 

Invasive species monitoring was not performed in the PSJ experiment because of the 

uncontrollable development of an undesirable species from the natural seed bank (i.e. 

Chenopodium album L., 1753, see B.6).  

B.6 | Vegetation monitoring  

Before plowing the site and destructing the existing vegetation, we performed a species 

inventory at both sites (Supplementary material; Table SA.1). In order to assess community 

structuring and productivity, we intended to record species composition by evaluating 

vegetation cover by species and measure aboveground biomass several times during the 

experiment.   

What was done 

In the PSJ site, the unsown, weedy species C. album rapidly dominated all plots in early spring 

2019 until reaching several meters high and forming a dense and impenetrable canopy 

(Figure A.6). C. album is one of the most abundant weeds in many crops in Europe (Schroeder 

et al., 1993) which successfully grows on disturbed soils with high nitrogen levels. We were 

therefore unfortunately constrained of giving up on the PSJ experiment. 
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Because plots located at the edge of the site (the line of plots on the right on Figure A.3), 
were highly invaded by thistle in autumn 2019 despite our removal efforts, we decided not 
to consider these plots in our vegetation survey. We therefore monitored four replicates for 
all community types except for B–1SP–D2, B–3SP–D2, B–9 SP–D2 and Control for which we 
monitored three replicates. Vegetation surveys were carried out in July 2019, November 
2019, and June 2020 using two 25 × 25 cm quadrats per replicate. Quadrat position was fixed 
and differed between harvest dates (distant from 75 cm; Figure A.4) as to avoid an effect of a 
vegetation removal from the precedent harvest. Measures realized on vegetation are 
indicated in Table A2 below. Total aboveground biomass per quadrat was harvested as close 
as possible to soil surface, dried for 48h at 50°C and weighed. 

                              

 

 

 

 

 

 

 

 

 

 

 

 

Date Measures 

July 2019 Species inventory 
Total aboveground biomass (g) 

November 2019 
Species inventory 
Species contribution (%) to total biomass (∑all species = 100) 
Total aboveground biomass (g) 

June 2020 

Species inventory 
Species contribution to vegetation cover (%) (∑all species >100) 
      Coefficient attribution:  
               1: <1% 
               2: 1-5% 
               3: 5-15% 
               4: 15-25% 
               5: 25-50% 
               6: 50-75% 
               7: 75-100% 
Total vegetation cover (%) 
Litter cover (%) 
Bare soil cover (%) 
Total aboveground biomass (g) 

Figure A.6 Colonization of the PSJ site by Chenopodium album, forming a dense canopy (July 03, 2019). 

Table A.2 Measures on vegetation realized in the TDV site. 
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B.7 | Data analyses (TDV experiment) 

Community trajectories  

To visualize the influence of sown community type on species composition dynamics over 

time, we ordinated species compositions using non-metric multidimensional scaling (NMDS) 

based on species presence/absence recorded during the three harvests (July 2019, 

November 2019 and June 2020), depending on sown community type. We used data from 

plots with communities seeded by hand, with eight replicates from four plots for all 

community types except for B–1SP–D2, B–3SP–D2, B–9 SP–D2 and Control for which we had 

six replicates from three plots. To recompose community trajectories, we calculated mean 

scores values for each sown community type and each harvest date. The analysis was 

performed using the function ‘metaMDS’ in the ‘vegan’ package (Oksanen et al. 2007) 

Community structure 

To visualize the influence of sown community type on community structure, we ordinated 

species abundances using non-metric multidimensional scaling (NMDS) using data of June 

2020 based on cover coefficients (Table A2), depending on sown community type. We used 

data from plots with communities seeded by hand, with eight replicates from four plots for 

all community types except for B–1SP–D2, B–3SP–D2, B–9 SP–D2 and Control for which we 

had six replicates from three plots. The analysis was performed using the function ‘metaMDS’ 

in the ‘vegan’ package (Oksanen et al. 2007). 

Seeding method 

To visualize the influence of the seeding method (by hand vs. hydroseeding) on community 

structure, we ordinated species abundance of the sown community types A-1SP-D1, A-1SP-

D2, A-9SP-D1 and A-9SP-D2 using non-metric multidimensional scaling (NMDS) using data 

of June 2020 based on cover coefficients (Table A2), depending on the seeding method. We 

had eight replicates from four plots for each sown community type and seeding method. The 

analysis was performed using the function ‘metaMDS’ in the ‘vegan’ package (Oksanen et al. 

2007). 

C | Results and discussion 

C.1 | Soil analyses 

Soil of the TDV site was characterized by a clay loam texture composed of 65% of silt  while 

soil  of the PSJ site was characterized by a sandy soil texture composed of 65% of coarse 

sand (Supplementary material; Table SA.2). Both soils were alkaline (pHTDV=8.2 pHPSJ=8.3) and 

contained high total Ca (CaTDV=31% and CaPSJ =22.5%) and and CaO contents (CaOTDV=10.3 

g/kg and CaOPSJ=7.8 g/kg), intermediate N (NTDV=1.7 g/kg and NPSJ =0.7 g/kg) and low P2O5 

(P2O5TDV=42.8 mg/kg and P2O5PSJ=54.3) and K2O levels (K2OTDV=198.5 mg/kg and K2OPSJ=66.0 

mg/kg). Soil of the TDV site was richer in total organic matter (TOMTDV=3.1%) than the PSJ 
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site (TOMPSJ=1.1%). Soil of the TDV site also contained particularly elevated levels of MgO 

(382.5 mg/kg) and Na2O (159 mg/kg). In summary, the two sites differ by their soil texture, 

soil organic matter, magnesium oxide and sodium contents. Unfortunately, because C. album 

strongly colonized the PSJ site in early spring 2019 and the subsequent abandonment of this 

experimental site (Figure A.6; see B.6), we were not able to test whether these differences in 

soil conditions influenced sowing success and invasibility. The rest of the results will discuss 

the results of the TDV experiment only. 

C.2 | Invasion resistance (TDV experiment) 

We did not recorded any sown invasive species emergence during the two first growing 

seasons although a high germination rate was observed in controlled conditions. Therefore, 

we were not able to evaluate early invasion resistance.  

The absence of invasive species emergence may be due to (1) unfavorable abiotic conditions 

for seedling emergence, notably the particularly dry spring conditions, (2) competition with 

established native species, and/or (3) seed predation or disease. An influence of sowing on 

invasive species seedling emergence is unlikely since no emergence was recorded in unsown 

control plots. 

C.3 | Vegetation survey (TDV experiment) 

Species inventory 

The three vegetation surveys carried out in June 2019, November 2019 and June 2020 allowed 

us to record 61 taxa with 43 identified at the species level, among which 30 were not sown 

(Supplementary Material; Table SA.3). This result indicates a strong emergence of species 

from the remaining seed bank. 

Influence of initial seeding on vegetation 

Initial seeding affected species richness (Figure A.7), the evolution of species composition 

over time (Figure A.8), and final community structure in the second year (Figure A.9), but did 

not clearly influenced aboveground biomass production of the communities compared to 

the unsown control plots (Figure A.10). 
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Figure A.7 Species richness (mean per 25 × 25 cm quadrat ±SE) of the communities monitored in the 

TDV experiment for the three harvests (July 2019, November 2019 and June 2020) depending on 

community type (see Table A1 for code names).   

 

  

Figure A.8 Trajectories of communities based on non-metric multi-dimensional scaling (NMDS) 

ordination of species presence/absence (TDV site). The figure shows the two-dimensional solution 

exhibiting the least stress (0.22). Each community type (see Table A1 for code names) is associated to a 

specific color. The trajectory of each community type is represented by the circles (means of the NMDS 

axes for each harvest – July 2019, November 2019 and June 2020) linked by arrows. Species occurring 

at least ten times during the surveys are depicted. 
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Figure A.9 Results of the non-metric multi-dimensional scaling (NMDS) ordination of species 

abundance in June 2020 (TDV site). The figure shows the two-dimensional solution exhibiting the least 

stress (0.19). Each community type (see Table A1 for code names) is associated to a specific color, with 

each point representing a replicate. Ellipses represent the two set of sown species (see Table A1 for 

code names). Species occurring at least ten times during the survey are depicted. 

Figure A.10 Total aboveground biomass (mean per 25 × 25 cm quadrat ±SE) of the communities in the 

TDV experiment for the three harvests (July 2019, November 2019 and June 2020) depending on 

community type (see Table A1 for code names).   
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Sown species identity influenced community structuring, while density had a limited 

influence 

The set of species sown ((A) or (B); Table A1), and at a lesser extent, species richness (one, 

three or nine species; Table A1) had a noticeable effect on community composition and 

structure while the influence of seeding density seemed limited (Figures A.8, A.9), which is 

in accordance with the results of Chapter 3. Numerous unsown species established during 

the two growing seasons (Supplementary material; Table SA.3). Some ruderal, fast-growing 

species, such as Helminthotheca echioides, Polygonum aviculare and thistles (mostly Cirsium 

sp.), emerged abundantly from the seedbank (a dispersal from the surroundings is less likely 

in view of the rapid and profuse emergence) and became rapidly dominant. We consequently 

removed the largest individuals to favor the establishment of sown species. This result points 

out how the presence of a large seed bank could potentially hamper the successful 

establishment of desired species.  

The results indicate a variable establishment success of the sown species. Communities that 

received three or nine species of the species set (A) (i.e. A-3SP-D1, A-3SP-D2, A-3SP-D1, A-

9SP-D1, A-9SP-D2) showed close, converging trajectories (Figure A.8) and structure in the 

second year after sowing (Figure A.9), most likely due to the high occurrence of the sown 

species D. glomerata, L. perenne, O. viciifolia, P. lanceolata and P. sanguisorba. This result 

supports that these species may have successfully established from seed (i.e. only P. 

lanceolata was recorded on the site before sowing), which influenced community 

structuring. The convergence of communities sown with L. perenne (A-1SP-D1 and A-1SP-

D2) and unsown control communities suggests however that the initial influence of L. 

perenne seeding did not persisted much over time. The composition of all communities 

globally tended to converge over time (Figure A.8), which would suggest that initial sowing 

advantage faded with time (Young et al. 2016). 

Results also suggest a greater establishment success of species from the species set (A) 

compared with species of the set (B), since (1) (B) community types showed an overall closer 

trajectory (Figure A.8) and structure (Figure A.9) to unsown control communities than (A) 

community types, and (2) we found a low occurrence of numerous (B) species (Figure A.9). 

This is in agreement with our hypothesis that species better adapted to clayish soil will better 

establish. However, the lack of comparison with the PSJ site does not allow us to draw robust 

conclusions: these species may have also better established in other soil conditions, in which 

case their success would not be due to a better adaptation to soil conditions. 

The seeding method (by hand or hydroseeding) did not affected community structure 

Our results demonstrate that seeding method (by hand or hydroseeding) did not affected 

community structure (Figure A.11). The use of hydroseeding may particularly influence 

vegetation growth when containing fertilizers and mulch composed of cellulose fiber, which 

hold moisture to allow the proper and rapid germination of sprayed seeds (Parsakhoo et al. 
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2018). Here, the revegetation mix was composed of water and seeds only, which may explain 

the weak difference with a hand sowing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A.11 Results of the non-metric multi-dimensional scaling (NMDS) ordination of 

species abundance in June 2020 (TDV site) depending on community type and seeding 

method. The figure shows the two-dimensional solution exhibiting the least stress (0.17). 

Each community type (see Table A1 for code names) is associated to a specific color, with 

each dot representing a replicate. The two seeding methods are indicated by different 

symbols. Ellipses represent the two seeding methods. Species occurring at least ten times 

during the survey are depicted. 
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D | Conclusions and perspectives 

We can reasonably suggest that the absence of seedling emergence of the sown invasive 

species (as well as the variable establishment success of sown species) was at least partly 

due to the very dry conditions encountered at the time of sowing and that lasted several 

months. Guaranteeing the success of a revegetation-based strategy in environments 

subjected to strong inter-annual variabilities in temperature and rainfall (such as in 

Mediterranean areas), may thus prove to be challenging.  

The high species emergence from the seedbank completely cancelled the effect of sowing in 

the PSJ site (Figure A.6; see B.6) and may have buffered differences between community 

types in the TDV site (see below). Civil works such as roadside construction generally involve 

deep soil disturbances (e.g. removal of thick soil layers, substrate addition), which can 

potentially dilute the natural seed bank. On construction sites, a lower emergence from the 

seed bank is therefore expected, implying that (1) active revegetation is all the more 

necessary to limit invasion, and (2) a greater establishment of the sown species is more likely. 

The results of the TDV experiment overall support that initial seed addition, and especially 

the identity of the species sown, influenced community structuring over two growing 

seasons. A variable establishment success and persistence of initial sowing advantage 

occurred between species, generating differences in community structuring. Species 

richness and aboveground productivity were however less impacted by sowing, reflecting 

the successful establishment of numerous unsown species. The high occurrence of unsown 

species producing large individuals (field observation), in particular H. echioides (recorded in 

63% of all quadrats all surveys combined) may have buffered the differences between 

community types on aboveground biomass production.  

Finally, long-term studies assessing the effect of colonization history on community 

structuring are rare. Maintaining vegetation surveys for several years would improve our 

knowledge about long-term effects of initial sowing.  

Hypotheses on invasion resistance 

The results of summer harvests in the first and the second years indicate a low difference in 

aboveground biomass production between sown and unsown control communities (Figure 

A.10). On the assumption that increasing total biomass enhances early invasion resistance 

(e.g.  Lulow 2006; Rinella et al. 2007; Yannelli Lucero et al. 2020), we could expect here a 

weak effect of sowing on early invasion success. However, unsown control communities 

were dominated by the annual weedy species H. echioides (recorded in 77% of the quadrats, 

and displaying a median cover of 75 – 100% in June 2020), which dominance may decrease 

over time. Therefore, sown communities displaying a much lower cover of H. echioides 

(median cover 5 – 15 %) may, in the longer term, offer a greater biomass stability and invasion 

resistance. 
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Species richness tended to be lower in unsown control communities than in most sown 

communities (Figure A.7), suggesting that some sown species successfully established 

and/or that seeding facilitated the recruitment of unsown species. Several studies associate 

a higher species richness to a greater invasion resistance (e.g. Byun et al. 2013; Connolly et 

al. 2017; Levine & D’Antonio 1999; Tilman 1997). Following this hypothesis, sown communities 

may present a stronger resistance to invasion. 
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Supplementary material 

Table SA.1 Species inventory in TDV and PSJ site before plowing (May 05, 2018).  

TDV  PSJ 
Bromus hordeaceus L. 
Capsella bursa-pastoris subsp. bursa-pastoris 
(L.) Medik. 
Carex otrubae Podp. 
Cerastium glomeratum Thuill. 
Crepis vesicaria subsp. taraxacifolia (Thuill.)  
Thell. ex Schinz & R.Keller 
Cynodon dactylon (L.) Pers. 
Daucus carota L. 
Dittrichia viscosa (L.) Greuter 
Ervum gracile (Loisel.) DC. 
Geranium dissectum L. 
Helminthotheca echioides (L.) Holub 
Hirschfeldia incana (L.) Lagr.-Foss. 
Holcus lanatus L. 
Hordeum murinum subsp. leporinum (Link) 
Arcang. 
Lactuca L. 
Lotus corniculatus L. 
Malva nicaeensis All. 
Medicago polymorpha L. 
Medicago sativa L. 
Melilotus indicus (L.) All. 
Papaver rhoeas L. 
Picris hieracioides subsp. hieracioides L. 
Plantago coronopus L. 
Plantago lanceolata L. 
Poa annua L. 
Poa trivialis L. 
Podospermum laciniatum (L.) DC. 
Polygonum aviculare L. 
Ranunculus bulbosus L. 
Ranunculus sardous Crantz 
Rumex crispus L. 
Schedonorus arundinaceus (Schreb.) Dumort. 
Senecio vulgaris subsp. vulgaris L. 
Silybum marianum (L.) Gaertn. 
Sonchus asper (L.) Hill 
Symphyotrichum squamatum (Spreng.) 
G.L.Nesom 
Trifolium campestre Schreb. 
Trifolium pratense L. 
Trifolium repens L. 
Trifolium squamosum L. 
Trigonella officinalis (L.) Coulot & Rabaute 
Verbena officinalis L. 
Vicia angustifolia L. 

 Ambrosia psilostachya DC. 
Anisantha diandra (Roth) Tutin ex Tzvelev 
Anisantha sterilis (L.) Nevski 
Arenaria leptoclados (Rchb.) Guss. 
Avena barbata Pott ex Link 
Bromus hordeaceus L. 
Catapodium rigidum (L.) C.E.Hubb. 
Cerastium pumilum Curtis 
Cerastium semidecandrum L. 
Convolvulus arvensis L. 
Cynodon dactylon (L.) Pers. 
Fallopia convolvulus (L.) Á.Löve 
Hordeum murinum subsp. murinum L. 
Lagurus ovatus L. 
Lathyrus cicera L. 
Lolium rigidum Gaudin 
Lysimachia arvensis (L.) U.Manns & Anderb. 
Medicago sativa subsp. sativa L. 
Papaver rhoeas L. 
Plantago coronopus L. 
Plantago lanceolata L. 
Poa annua L. 
Polygonum aviculare L. 
Rumex crispus L. 
Silene conica L. 
Silene latifolia Poir. 
Silene vulgaris (Moench) Garcke 
Stellaria pallida (Dumort.) Piré 
Trifolium campestre Schreb. 
Trifolium nigrescens Viv. 
Verbascum sinuatum L. 
Veronica arvensis L. 
Vulpia ciliata Dumort. 
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Table SA.2 Results of soil analyses for the TDV and PSJ sites. Values refer to means of the four samples ±SD. 

 

 

 

 

 

 

 

 

 

 

 

Soil texture 

 Clay (%) Fine silt (%) Coarse silt (%) Fine sand  (%) Coarse sand (%) 

TDV 24.33±0.87 40.95±0.58 24.83±1.64 8.78±2.24 1.13±0.1 

PSJ 3.25±0.88 8±0.73 8.8±3.08 15.1±1.16 64.88±5.57 

Soil chemistry 

 
pH Ca tot. (%) 

Organic 
matter tot. 

(%) 

P2O5 
(mg/kg) 

K2O 
(mg/kg) 

MgO 
(mg/kg) 

CaO 
(g/Kg) 

Na2O 
(mg/kg) 

N  tot. 
(g/Kg) 

C tot 
(g/kg) 

NO3- 

(mg/kg) 
NH4+ 

(mg/kg) 

TDV 8.2±0.1 31.0±0.8 3.1±0.3 42.8±4.7 198.25±26.9 382.5±21.8 10.3±0.4 159±22.05 1.7±0.2 17.89±1.64 12.0±0.5 4.6±0.4 

PSJ 8.3±0.1 22.5±0.6 1.1±0.3 54.3±2.9 66.0±10.7 88.5±14.3 7.8±0.3 12±1.15 0.7±0.1 6.5±1.55 10.6±2.9 2.5±0.2 
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Table SA.3 Species inventory carried out in TDV (pooled inventories of July 2019, November 2019 and 

June 2020) and PSJ (April 22, 2019) sites.  

TAXA 

Aeluropus littoralis (Gouan) Parl., 1850 
Anthyllis vulneraria L., 1753 
Aster  sp.  
Symphyotrichum squamatum (Spreng.) G.L. Nesom, 
1995 
Atriplex prostrata Boucher ex DC., 1805 
Beta vulgaris subsp. maritima (L.) Arcang., 1882 
Bromus hordeaceus L., 1753 
Bupleurum sp. 
Chenopodiaceae sp. 
Cirsium arvense (L.) Scop., 1772 
Cirsium sp. 
Cirsium vulgare (Savi) Ten., 1838 
Convolvulus arvensis L., 1753 
Cynodon dactylon (L.) Pers., 1805 
Dactylis glomerata L., 1753 
Daucus carota L., 1753 
Elytrigia sp. 
Geranium molle., 1753 
Helminthotheca echioides (L.) Holub, 1973 
Hordeum marinum Huds., 1778 
Lactuca saligna L., 1753 
Lactuca serriola L., 1756 
Lactuca sp. 
Lathyrus sp. 
Lepidium draba L., 1753 
Lolium perenne L., 1753 
Lotus sp. 
Malva nicaaensis All., 1785 
Malva sylvestris L., 1753 
Medicago polymorpha L., 1753 

Medicago sativa L., 1753 
Medicago sp. 
Melilotus sp. 
Onobrychis viciifolia Scop., 1772 
Paspalum distichum L., 1759 
Picris hieracioides L., 1753 
Plantago coronopus L., 1753 
Plantago lanceolata L., 1753 
Plantago sp. 
Poa trivialis L., 1753 
Polygonum aviculare L., 1753 
Poterium sanguisorba L., 1753 
Ranunculus sp. 
Rumex crispus L., 1753 
Rumex sp. 
Schedonorus arundinaceus (Schreb.) Dumort., 
1824 
Senecio sp. 
Sinapis arvensis L., 1753 
Sonchus asper (L.) Hill, 1769 
Sonchus oleacerus L., 1753 
Sonchus sp. 
Trifolium campestre schreb., 1804 
Trifolium fragiferum L., 1753 
Trifolium squamosum L., 1759 
Trifolium pratense L., 1753 
Trifolium repens L., 1753 
Trifolium sp. 
Trigonella esculenta Willd., 1809 
Vicia sativa L., 1753 
Vicia sp. 
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